
The general purpose financial statement (or financial report) has existed for over two millennium. Formats for general purpose financial statements have included clay, papyrus, paper, word processor documents such as Microsoft Word, PDF, and HTML. The common thread that all these paper-based or e-paper reports have is that a machine cannot read and understand these reports.

The global standard XBRL is showing promise as a structured, machine-readable information format that is also human-readable. Ten years of XBRL-based financial reports submitted to the SEC by public companies is revealing how to employ this technology and enable machines to be employed to not only use such structured information for more effective and efficient analysis of reported financial information, but also enable the use of artificial intelligence, intelligent software agents, and expert systems to make the process of creating financial reports more efficient and effective.

Think of how the digital blueprint changed not only the utility of blue prints but rather the entire design, engineering, and construction supply chain.

The institution of accountancy needs to create a digital, or structured, version of the general purpose financial statement which is machine-readable.

The digital general purpose financial report is an improvement that helps move the institution of accountancy forward, providing an improvement to that institution. Given today's increasing volume of financial information, complexity of financial information, and importance of financial information; it makes perfect sense to provide such a digital alternative or option.

Financial analysis has been digital for many years; first via the electronic spreadsheet and now with a multitude of options.

With digital books, maps, photos, films, music, blueprints, etc.; what about the digital financial statement does not make sense? Perhaps I am stating the obvious.

This section provides the reader with a conceptual overview of an XBRL-based digital financial report. It paints the big picture.

The institution of accountancy needs to create a digital, or structured, version of the general purpose financial statement which is both human-readable and machine-readable.

1.1. Accounting, reporting, auditing, analysis in a digital environment

But it is not just the general purpose financial report that should be machine-readable. Special purpose financial reports should likewise have the option to be created digitally. In fact; accounting, reporting, auditing, and analysis need to be updated for the digital environment.

Artificial intelligence, structured information, distributed ledgers, machine readable workflow model standards, machine readable decision model standards, and Lean Six Sigma are a match made in heaven and will have a significant impact on accounting, reporting, auditing, and analysis in a digital environment that will prevail during the Fourth Industrial Revolution.

1.2. Digital environment

We live in the digital age, the information age. Some people go as far as calling this the fourth industrial revolution. The paper-based financial report is a relic of the past. Unstructured electronic financial reports or “e-paper” formatted and distributed as HTML, PDF, or word processing documents are likewise obsolete. A financial report that is not only readable by humans, but also machine-readable provides advantages.

There is a need for a digital alternative for the general purpose financial report. Accounting, reporting, auditing, and analysis all take place in a digital environment and we need to update our tools to better work in this environment.

With the volume of information increasing each year at increasing rates and at the same time the complexity of financial information increasing; simply throwing more humans at the problem will simply not solve the problem.

1.3. Working toward a conceptual overview of a structured XBRL-based digital financial report

To begin, keep in mind that the terms “digital financial report” and “structured data” mean the same thing. The CFA Institute wrote an insightful paper, Data and Technology: Transforming the Financial Information Landscape, which

8 YouTube, How XBRL Works, https://www.youtube.com/watch?v=nATJBPQiTxM
communicates their vision of financial reports which have been created as structured data.

"Begin with the end in mind," is habit 2 of Stephen R. Covey's, *The Seven Habits of Highly Effective People*. To explain what a digital financial report is we will start at the end. We will explain what a general purpose financial report is and how an XBRL-based digital financial report can also help us achieve that objective, sometime in more effective and efficient ways than traditional general purpose financial reports.

At a very high level the goal of a general purpose financial report is this: communicate information about the financial condition and financial position of an economic entity.

Generalizing this even more, the goal can be stated as: means of conveying meaningful information. To do so, that process must be reliable, repeatable, predictable, safe, cost effective, easy to use, robust, scalable, secure when necessary, auditable (track provenance) when necessary.

1.4. *Essence of a General Purpose Financial Report*

The essence of a general purpose financial report\(^\text{11}\) can be described as follows:

A general purpose financial report is a high-fidelity, high-resolution, high-quality information exchange mechanism. The report is a compendium of complex logical information required by statutory requirements and regulatory rules plus whatever management of an economic entity wants to voluntarily disclose. The report represents quantitative and qualitative information about the financial condition and financial performance of an economic entity. There are a number of different financial reporting schemes: US GAAP, IFRS, IPSAS, GAS, FAS, etc. Financial reports are logical systems.

Financial reports are not uniform. Financial reports are not forms, they have variability. This consciously allowed variability is an essential, characteristic trait of robust reporting schemes such as US GAAP, IFRS, and others. This allowed variability contributes to the richness, high-fidelity, and high-resolution of reported financial information that is unique to an industry sector, a style of reporting, or an economic entity. This variability is a feature of such reporting schemes. Different reporting styles, different subtotals used to aggregate details, and using some specific approach given a set of allowed alternatives are examples of variability. Variability does not mean "arbitrary" or "random". There are known identifiable patterns.

Rules are used to articulate allowed variability and "channel" creators of reports in the right direction and therefore control variability, keeping the variability within standard limits. That keeps quality where it needs to be. Rules enable things like preventing a user from using a concept meant to represent one thing from unintentionally being used to represent something different. Further, the discipline of describing something in a form a computer algorithm can understand also assists you in understanding the world better; weeding out flaws in your understanding, myths, and misconceptions about accounting and reporting standards.

A **framework** is a set of principles, assumptions, ideas, concepts, values, rules, laws, agreements, and practices that establishes the way something operates. A **theory** is a tool for understanding, explaining, and making predictions about a system. A **system** is a cohesive conglomeration of interrelated and interdependent parts that is either natural or man-made. Having the proper framework, theory, and system helps you understand digital financial reports and work with them effectively.

Financial report is a logical system that is based on basic mathematics.

What is conspicuously missing from the minds of most professional accountants and auditors is a set of principles, a framework, and a theory relating to how to think about XBRL-based digital financial reports.

1.5. Use case

Consider the following scenario. Two economic entities, A and B, each have information about their financial position and financial performance. They must communicate their information to an investor who is making investment decisions which will make use of the combined information so as to draw some conclusions. All three parties (economic entity A, economic entity B, investor) are using a common set of basic logical principles (facts, statements, deductive reasoning, inductive reasoning, etc.), common financial reporting standard concepts and relations (i.e. US GAAP, IFRS, IPSAS, etc.), and a common world view so they should be able to communicate this information fully, so that any inferences which, say, the investor draws from economic entity A’s information should also be derivable by economic entity A itself using basic logical principles, common financial reporting standards (concepts and relations), and common world view; and vice versa; and similarly for the investor and economic entity B.

1.6. Principles

The following is a summary of fundamental principles which contribute to the framework of a general purpose financial report:

1. A general purpose financial report is a high-fidelity, high-resolution, high-quality information exchange mechanism.
2. Creators of general purpose financial reports are information bearers.
3. Consumers of information from a general purpose financial report are information receivers.
4. Prudence dictates that using information from a general purpose financial report should not be a guessing game.

5. All general purpose financial report formats conveying information should convey the exact same meaning be that format paper, e-paper, or some machine readable format.

6. Explicitly stated information from information bearers or reliably derived information is preferable to requiring information receivers to make assumptions.

7. Double entry accounting enables processes that allow for the detection of information errors and to distinguish errors (unintentional) from fraud (intentional).

8. Catastrophic logical failures are to be avoided at all cost as they cause systems to completely fail.

The following graphic captures the essence of a general purpose financial report.

Special purpose financial reports work identically to general purpose financial reports except that they use a different financial reporting scheme16.

1.7. Historical financial reporting

The role of general purpose financial report is to provide information about the financial position, financial condition, and changes in financial position that is useful to management and other stakeholders of an economic entity for economic resource allocation decisions. For information in a general purpose financial report to be useful, the report should be timely and free from material errors, omissions, and fraud.

General purpose financial reporting has existed for thousands of years in different forms. Below is an annual balance sheet of a State-owned farm which was drawn up by a scribe which details the account of materials and workdays for a basketry shop in 2040 BC17:

17 Wikimedia, Annual balance sheet of a State-owned farm, drawn up by the scribe responsible for artisans: detailed account of materials and workdays for a basketry workshop. Clay, ca. 2040 BC., retrieved October 28, 2015, https://commons.wikimedia.org/wiki/File:Balance_sheet_Mesopotamia_Louvre_AO6036.jpg
Accounting existed before the invention of writing. Between 5,000 and 10,000 years ago farmers in Mesopotamia, where agriculture was born, used physical objects to count crops and animals. The distinction between types of crops or animals was made by using different types and shapes of objects. Then, in about 3200 BC, around 5,000 years ago, the first spreadsheet was invented.

These farmers began documenting information using clay tablets in the earliest form of human writing ever discovered called Cuneiform. They partitioned their clay tablet into rows, columns, and cells. These farmers used single-entry accounting. The spreadsheet below documents an account of barley distribution:

19 Metropolitan Museum, Proto-Cuneiform tablet with seal impressions: administrative account of barley distribution with cylinder seal impression of a male figure, hunting dogs, and boars, https://www.metmuseum.org/art/collection/search/329081
In 1211 AD a bank in Florence was the first documented use of double-entry accounting20. Between 1299 AD and 1300 AD double-entry accounting came of age. In 1494 AD during the Renaissance, Venetian mathematician and Franciscan friar Luca Pacioli21 published a book, *Summa de arithmetica, geometria. Proportioni et proportionalita* (Sum of Arithmetic, Geometry, Proportion and Proportionality)22. That book documented an approach to accounting now called double-entry bookkeeping and recommended that others use this approach. The approach allowed for better error detection and the ability to differentiate unintended errors from fraud. Accountants adopted that new approach.

A significant advancement the general purpose financial statement23 was the move from clay tablets to paper. Another significant advancement in financial reporting included the invention of the printing press, the copy machine, and word processing

22 Wikipedia, Summa de arithmetica, https://en.wikipedia.org/wiki/Summa_de_arithmetica
which made distributing information easier. Yet another advancement was the internet which enabled the broad distribution of financial information for literally pennies using e-paper formats such as PDF, HTML, and word processing document formats.

For the past 100 years or so financial reporting has been mainly paper based. Only in the last 25-30 years have reports been created electronically in a word processor and then printed or saved to an electronic format or “e-paper” such as PDF or HTML and broadly distributed simultaneously anywhere on the planet.

But the information contained in PDF and HTML reports can still only be read by humans. Digital financial reporting, in contrast, makes much of this information readable by computers, vastly expanding the potential for automating processes for creating financial reports and analyzing information communicated by those financial reports. XBRL enables new modern approaches to creating a financial reporting schemes and new modern approaches to creating general purpose and special purpose financial statements.

Help from machines can reduce many mechanical tasks and therefore the time and also the costs of creating and consuming financial report information and improve information quality at the same time. Automation results in increased productivity.

1.8. The High Cost of Errors

Errors in financial reports are embarrassing if not detected and corrected, time-consuming to detect and fix, and are a waste of the finance team’s resources. These errors are generally caused by mentalities that the manufacturing industry have

solved using Lean Six Sigma techniques which have not been adopted by accounting and financial reporting departments.

An AccountingToday article, Are the numbers right?, points out that nearly 70% of respondents to a survey said that their organization has made a significant business decision based on inaccurate financial information. The reasons for the errors include human error, lack of automated controls and checks, and clunky spreadsheets and outdated processes.

Further, a Blackline study, Mistrust in the Numbers, points out a significant rift between how accurate CEOs and CFOs believe the numbers are as contrast to the quality of the numbers based on those who actually maintain the accounting information. Basically, higher level executives believe the numbers are far more accurate than they really are. The Blackline study also points out that human error is one of the biggest challenges in terms of attaining high quality and that errors in the information add weeks to processes.

With the volume of information increasing at increasing rates and the complexity of the information increasing at the same time; throwing more overworked humans at this situation will not solve the problem, it will only make the problem even worse.

1.9. Changing old school financial report creation processes

Have the stars aligned, creating an opportunity for reinventing the outdated old school financial report creation processes? In an article, Surety Data Standards: Is Manual Data Entry Dead?, NASBP says "We're hammering the final nail in the coffin of manual data entry... more to come." Surety insurance companies use an XBRL taxonomy to standardize work-in-progress reporting and reduced the process from 20 minutes to 3 seconds. NASBP says, "The gruesome (and grueling) days of painful re-keying of data may be coming to an end. Could data standards be the magic bullet?"

Data standards are one important piece of the puzzle to making the painful, monotonous, onerous, grueling, gruesome, and downright barbaric old-school practices use in accounting, reporting, auditing, and analysis more modern.

No one really disputes the fact that old school processes, practices, techniques, and procedures for creating external financial reports contain inefficiencies. For example, consider these four sources:

• **CFA Institute**[^31]: calls for "...greater efficiencies within the current inefficient system" [of creating financial reports].

• **Gartner**[^32]: "...average Fortune 1000 company used more than 800 spreadsheets to prepare its financial statements"

• **Ventana Research**[^33]: "...for larger companies, assembling the periodic external reports typically is an inefficient and error-prone process."

• **PriceWaterhouseCoopers**[^34]: "...old school manual processes..." and "commonly cut and pasted, rekeyed, or manually transferred into word processing and spreadsheet applications used for report assembly and review process steps"

What has changed?

1.10. Role of structured information as an enabler

The answer is that one thing has changed which has enabled another thing. Each of the four organizations above hails XBRL or "structured data" as the way to make financial reporting processes more efficient.

That is not quite right. XBRL or structure data is not the change that will make processes more efficient; structured data enables the change to occur. If you don’t understand the difference between structured and unstructured data, the video, [How XBRL Works][^35], helps you see what structured information is as contrast to unstructured information.

So, XBRL or structured data, is the enabler of a change, it is not the change itself. Again, then what changed? Well, two things changed.

First, the structured information lets a computer effectively address the individual pieces of a financial report. Because of the structure, software applications can do things with the individual pieces of the report. Basically, you can take measurements of structured information; that was impossible when financial reports were unstructured information.

Second, because you can address or measure or otherwise work with the individual pieces that make up a financial report; more processes, procedures, and other tasks used in the report creation process can be automated using machine-based processes because the individual report pieces are identifiable.

Old school review processes are almost 100% manual. This is because old paper and e-paper financial report formats were unstructured. If information is structured, it does not have to be this way. Tasks can be automated leveraging the structured nature of the information. On the other hand, there is ZERO probability that 100%...
of the financial report creation process will be automated. To think that would be absurd.

What percentage can effectively be automated though? Certainly, it is some percentage. That percentage is greater than 1%. Is it 10%? Is it 20%? Is it 50%? More than 50%? Time will reveal the answer to that question.

Further, there will no doubt be quality improvements will also be achievable. There is no way that a process that is nearly 100% manual can be of perfect quality. While current report creation processes throw many hours of high-quality and expensive effort at processes to detect and correct errors; humans make mistakes. So, there is some level of quality problems that exist in the current old school processes that cause errors. But you cannot see those problems or measure the problems because, you guessed it, the current financial reports are unstructured and you cannot address the pieces of a report. Just because you cannot measure quality problems does not mean that quality problems do not exist. They exist.

Interestingly, the discipline of describing something in a form a computer algorithm can understand assists you in understanding the world better, weeding out myths and misconceptions. This process will help economic entities creating reports improve report quality but it will also help standards setters and regulators create clearer financial reporting rules.

1.11. Benefits of digital financial reporting

Many professional accountants don’t have the background knowledge to understand how to make computers perform work effectively\(^3\). But these skills can be learned.

With machine readability of financial reports computers can read the reported financial information, truly understand that information, and help users of the report make use of the reported information. But not only users of reported financial information will benefit. Creators of reports will also benefit. Computers can also help during the report creation process. For example, computers can compare reported information to mandated disclosure rules and make sure the report's creator complied with those rules.

Below is a rendering of the balance sheet of Microsoft Corporation viewable in a free publicly available XBRL-based digital financial report viewer application\(^7\):

\(^7\) You can try out an XBRL-based digital financial report here: https://edgardashboard.xbrlicloud.com/flex/viewer/XBRLViewer.html#instance=http://www.sec.gov/Archives/edgar/data/789019/0001193125166662209/msft-20160630.xml
Here is a summary of some of the general benefits of structured digital financial reporting and machine readability of that information:

- **Increased report flexibility** - reported information can be easily and reliably reconfigured, reformatted and otherwise repurposed without rekeying to suit the specific needs of an analyst or regulator.

- **Reliable repurposing of information and improved communication** - ambiguity is reduced because for a computer to make use of the information, that information cannot be ambiguous. Going through the process of making the information easy for a computer to understand also makes it easier for humans to communicate more effectively and helps them bring into consciousness ambiguities that exist in the current process but are unconscious of.

- **Reliable process automation** - processes can be reliably automated because computers can reliably move information through the workflow. Linking digital financial information together based on the meaning of the information can be much more reliable than trying to link physical locations within spreadsheets, which commonly change.

- **Increased software adaptability** - software can easily adapt itself to specific reporting scenarios and user preferences because it understands the information it is working with; rather than having to get software developers involved and program to make changes, accounting professionals adjust metadata themselves to make adjustments they require.

This is not to say that humans will no longer be involved in creating or consuming financial reports. Clearly, machines will never be able to exercise judgment, which will remain something only humans can do. But to understand exactly what computers will be able to do, will never be able to do and how exactly to successfully get a computer to perform work; you need to understand a little bit about how to harness the power of a computer.

Just like a calculator helps a professional accountant do math faster and more reliably, software will augment the skills of professional accountants and help them with the many tasks related to creating financial reports.

No magic is involved here. Rather, digital financial reporting relies on well-understood information technology practices, agreement on standard technical syntaxes, and carefully and clear articulation of already agreed-upon financial reporting rules articulated in a manner that computers can effectively make use of.

1.12. Essentials of a machine-readable financial report

Fundamentally, three things are needed to make financial information, or any information for that matter, reliably understandable by computers.

First you need a technical syntax format that will physically carry the information between computer systems. In our case we are interested in the global standard XBRL, or the Extensible Business Reporting Language, format for expressing business information digitally. Second, you need to express the semantics of the domain you want the computer to understand. Semantics has to do with meaning: what are the important things in a business domain, such as financial reporting, and what are the important relations between the things that a computer must understand. If the sending computer and receiving computer do not have the same understanding of the meaning of the information, an automated information exchange can never take place as humans would always need to get involved to manually translate information from one computer to something understandable by the other computer. XBRL can also be used to convey this semantic information. Third, you need to express workflow or process rules so that the machines understand the correct protocol for exchanging and otherwise working with the information. For example, what is the protocol for correcting an error that has been detected?

1.13. Digital financial reporting alternative/option

As we have said, the general purpose financial statement (or financial report) has existed for over two millennium. Formats for general purpose financial statements have included clay, paper, word processor documents such as Microsoft Word, PDF, and HTML. The common thread that all these reports have is that a machine cannot read these reports because the reports are unstructured.

The institution of accountancy needs to create a digital, or structured, version of the general purpose financial statement which is machine-readable.

With digital books, maps, photos, films, music, blueprints, etc.; what about the digital general purpose financial statement does not make sense? Perhaps this is stating the obvious.

The digital general purpose financial report is an improvement that helps move the institution of accountancy forward, providing an improvement to that institution. Given today's increasing volume of financial information, complexity of financial information, and importance of financial information; it makes perfect sense to provide such a digital alternative or option.

Financial analysis has been digital for many years; first via the electronic spreadsheet and now with a multitude of options including business intelligence (BI) or other sorts of analysis software.

Structured financial reporting that is both human-readable and machine-readable and based on the global standard XBRL completely changes the paradigm of financial reporting.

In later sections we will show you in detail how a digital financial report works, a few new skills professional accountants must acquire to work within this new digital financial report paradigm, and understand new tasks that machine-based processes can perform for professional accountants.

1.14. The Finance Factory

Deloitte created the notion of what they call The Finance Factory⁴² to "package" these ideas of digital accounting, reporting, auditing, and analysis. The notion of the Finance Factory is a more specialized version of the more general notion of an Information Factory. A Financial Report Factory is a more specialized piece of a Finance Factory. All of these systems are essentially knowledge based systems⁴³. Another term for knowledge based system is an expert system⁴⁴. The following is a definition of a knowledge based system:

A knowledge based system is a system that draws upon the knowledge of human experts that has been represented in machine-readable form and stored in a fact database and knowledge base. The system applies problem solving logic using a problem solving method to solve problems that normally would require human effort and thought to solve. The knowledge based system supplies an explanation and justification mechanism to support conclusions reached by the knowledge base system and presents that information to the user of the system.

Think of a knowledge based system as a general purpose information factory. Imagine it as a system for creating an expert system. This is not a new idea45. This idea was described in the 1990s. The following graphic shows the components of a knowledge based or expert system:

The next section provides a brief description of what might be possible by looking at another document that has already made this transition to digital: the blueprint.

1.15. Financial Report is a Logical System

So how do you make a financial report machine readable? How do you get computers to perform useful work? The general answer is engineering. More specifically, you describe the financial report in terms that a computer can relate to and work with46. That is done by creating an ontology-like thing which describes the logical system of terms, relations, and assertions that make up a financial report47. Software then uses this machine-readable conceptualization to help you create XBRL-based financial reports or consume the information conveyed by such reports.

We will get into all these details in later sections. But now, let’s take a look at another industry that went through this digital transition and what we can learn from that transition.

45 H. Penny Nii, \textit{EXPERT SYSTEMS BUILDING TOOLS: DEFINITIONS}, http://www.wtec.org/loyola/kb/c3_s2.htm
46 Charles Hoffman, CPA, \textit{Artificial Intelligence and Knowledge Engineering Basics in a Nutshell}, http://xbrlsite.azurewebsites.net/2019/Library/KnowledgeEngineeringInNutShell.pdf
2. Learning about Digital Financial Reporting from CAD/CAM

Contrasting something new that does not yet exist to something similar that does exist is one way of understanding something. Digital financial reporting has the opportunity to do for the financial report and the financial reporting supply chain what CAD/CAM and BIM did for not only the blueprint, but for the entire product design and manufacturing life cycle.

2.1. Digital blueprint

Computer-aided design (CAD) is the use of computer systems to aid in the creation, modification, analysis, or optimization of a design. CAD software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. Computer-aided manufacturing (CAM) is the use of software to control machine tools such as numerically controlled (NC) machines.

In CAD/CAM software architectural objects have relationships to one another and interact with each other intelligently. For example, a window has a relationship to the wall that contains it. If you move or delete the wall, the window reacts accordingly.

In addition, in CAD/CAM software machine-readable architectural objects maintain dynamic links with construction documents and specifications, resulting in more accurate project deliverables. When someone deletes or modifies a door, the door schedule is automatically updated in your local application’s database and perhaps even in the database of the door supplier. Spaces and areas are updated automatically when the size of a room is changed and calculations such as total square footage are always up to date. That means, say, that the amount of paint necessary to cover a room or an entire building is always updated. Blueprints can be sent directly to numerically controlled (NC) machines.

Imagine what it would be like to construct a 100 story sky scraper, an iPhone, or a Boeing 777 if all the blueprints were paper-based. Turning this around, digital blueprints enable process and other improvements which allow more sophisticated products to be created effectively and efficiently.

2.2. CAD/CAM is an expert system

CAD/CAM software is an expert system that understands architectural design and engineering objects. CAD/CAM systems understand what things like buildings, walls,
doors are and the relations between those things. CAD/CAM software will not let you put, say, a door in a roof or otherwise construct nonsensical objects.

Systems such as CAD/CAM work by enabling software systems to work with objects and relations between different objects using machine readable rules or logic. Nontechnical professionals work with high-level objects that they understand rather than low-level technical artifacts that they do not. Machine-readable metadata is leveraged which supercharges software applications performing work.

2.3. BIM

CAD/CAM was popularized in the 1980s. CAD basically lets you work with geometric shapes such as lines, squares, triangles, and other drawing tools to electronically create drawings which could then be printed out. Essentially, CAD was a lot like creating an “e-blueprint”.

BIM is significantly different than traditional CAD. BIM, or Building Information Modeling. BIM is a disruptive technology. CAD was a drawing tool, BIM is a modeling tool. BIM models the systems of a building, structure, product, etc. BIM is about information. With BIM you work with objects such as windows, doors, roofs, walls, etc. This is by contrast to CAD where you work with lines, squares, and triangles.

If you watch the video, The Difference between CAD and BIM, you can better understand the advantages of BIM. In the video, for the first 3 minutes and 52 seconds the narrator shows how you work with lines, arcs, and other shapes to draw. Then after that, he shows how he works with walls, doors, windows, roofs, ceilings, floors and other such objects to work in a BIM tool. Views of the building are created automatically as the model is configured.

56 Jason Pratt, The Difference between CAD and BIM, https://vimeo.com/4415128
2.4. Digital financial report creation will be like BIM, not CAD

Today, most software used for creating XBRL-based financial reports is similar to CAD. That was a mistake made by software creators. The next evolution of creating XBRL-based financial reports will be like using BIM, not like using CAD. The technical syntax of what you are doing will be completely invisible to the business user of the software, pushed into the background the XBRL technical syntax will (a) always be right and (b) never be exposed to the software user.

As explained in the Logical Theory Describing a Business Report\(^{57}\) and the Financial Report Semantics and Dynamics Theory\(^{58}\); the models of a business report and a financial report can be defined. Patterns can be identified and leveraged.

As is explained in Putting the Expertise into an XBRL-based Knowledge Based System for Creating Financial Reports\(^{59}\) and Guide to Building an Expert System for Creating Financial Reports\(^{60}\), these ideas are already tested and proven to work effectively.

The document Special Theory of Machine-based Automated Communication of Semantic Information of Financial Statements\(^{61}\) explains the logical system of a financial report. There are six reporting schemes that provide metadata and test these ideas\(^{62}\). A working proof of concept has been created, Pesseract\(^{63}\), that uses the metadata and the logical model and tests this method, framework, principles, etc.

Expert systems are computer programs that are built to mimic human behavior and knowledge. Expert systems are computer applications that perform a task that would otherwise be performed by a human expert. A model of the expertise of a domain of knowledge of the best practitioners or experts is put into machine-readable form and the expert system reaches conclusions or takes actions based on that information.

\(^{63}\) Pesseract, http://pesseract.azurewebsites.net
Digital financial report creation and analysis software will be an expert system that understands things like economic entities, reported facts such as "Assets", parts of a financial report such as a "balance sheet" and an "income statement"; characteristics of financial reports such as the difference between a "business segment" and a "geographic area"; and other such information about a financial report.

In his book, *Systematic Introduction to Expert Systems*, Frank Puppe describes what an expert system is, how they work, and what they can achieve. Frank Puppe explains in his book that there are three general categories of expert systems:

- **Classification or diagnosis type**: helps users of the system select from a set of given alternatives.
- **Construction type**: helps users of the system assemble something from given primitive components.
- **Simulation type**: helps users of the system understand how some model reacts to certain inputs.

A digital financial report creation tool is basically an expert system that helps its user, a professional accountant, assemble and generate an external financial report. The final product, the financial report, could be generated in human-readable form like the HTML, PDF, or word processing document-type outputs; and/or in machine-readable form such as XBRL or other machine-readable formats.

A software based expert system has four primary components:

- **Database of facts**: A database of facts is a set of observations about some current situation or instance. The database of facts is "flexible" in that they apply to the current situation. The database of facts is machine-readable. An XBRL instance is a database of facts.

- **Knowledge base (rules, assertions)**: A knowledge base is a set of universally applicable rules created based on experience and knowledge of the practices of the best domain experts generally articulated in the form of IF...THEN statements or a form that can be converted to IF...THEN form. A knowledge base is "fixed" in that its rules are universally relevant to all situations covered by the knowledge base. Not all rules are relevant to every situation. But where a rule is applicable it is universally applicable. All knowledge base information is machine-readable. An XBRL taxonomy is a knowledge base. Business rules are declarative in order to maximize use of the rules and make it easy to maintain business rules.

- **Reasoning engine (rules engine)**: A reasoning engine provides a machine-based line of reasoning for solving problems. The reasoning engine processes facts in the fact database, rules in the knowledge base. A reasoning engine is also an inference engine and takes existing information in the knowledge base and the database of facts and uses that information to reach conclusions or take actions. The inference engine derives new facts from existing facts using the rules of logic. The reasoning engine is a machine that processes the information. An XBRL Formula processor, if built correctly, can be a reasoning engine and can perform logical inference.

- **Justification and explanation mechanism**: When an answer to a problem is questionable, we tend to want to know the rationale behind the answer. If the rationale seems plausible, we tend to believe the answer. The justification and explanation mechanism explains and justifies how a conclusion or
conclusions are reached. It walks you through which facts and which rules were used to reach a conclusion. The explanation mechanism is the results of processing the information using the rules processor/inference engine and justifies why the conclusion was reached. The explanation mechanism provides both provenance and transparency to the user of the expert system.

The four primary components of an expert system are generally wrapped within some graphical user interface that presents the expert system to the user of the software-based system.

Rather than each software application producing a new theory expressed in its own unique language; a digital financial report is based on global standard syntax, global standard semantics, and global standard workflow. And so, engines or machines can be used to effectively and efficiently process digital financial reports and information can be exchanged between machines using the global standard technical syntax which has global standard meaning. Other machines can be used in this process.

- A finite-state machine\(^{64}\) is a computing model used or paradigm to represent and control execution flow within a software application. Finite-state machines are very useful for implementing expert systems because they reduce software creation complexity. One benefit is that there is an audit trail that shows what happens as different pieces of information are input.

- A workflow engine\(^{65}\) is a software application/system that defines, manages, and monitors business processes, activities, and tasks used in the process of creating a financial report.

- A business rules engine\(^{66}\) is a software application/system that executes one or more business rules in a runtime production environment.

- An inference engine or reasoner\(^{67}\) is a piece of software able to infer logical consequences from a set of asserted facts or axioms.

The structured global standard syntax, the software machines/engines and their problem solving logic, and the agreed upon reporting standards of reporting schemes such as US GAAP, IFRS, and others work together to make the creation of such expert systems cost effective, make the software systems easy to use by the average professional accountant, and therefore enable work to be automated using computer processes which could here-to-for only be performed using manual processes.

3.1. Intelligent software agents assisting humans

There are two major techniques for implementing artificial intelligence\(^{68}\):

- **Logic and rules-based approach** (expert systems)\(^{69}\): Representing processes or systems using logical rules. Uses deductive reasoning.

\(^{68}\) Harry Surden, *Artificial Intelligence and Law Overview*, https://www.slideshare.net/HarrySurden/harry-surden-artificial-intelligence-and-law-overview/6-Major_AI_ApproachesTwo_Major_AI
- **Machine learning** (pattern-based approach): Algorithms find patterns in data and infer rules on their own. Uses inductive reasoning; probability.

Implementing a "good old fashion expert system" is a lot of work. A logic and rules-based approach is based on what amounts to an ontology-like thing which can be hard to get right but once you have this high-quality curated information; it can literally supercharge AI and make it do wonderful and useful things. This is proven technology, it works, but it is expensive and time consuming to get right.

You can combine both approaches and create a third approach which is a hybrid of both approaches.

Artificial intelligence is the automation of activities that we associate with human thinking and activities such as decision making, problem solving, learning and so on.

Expert systems is a branch of artificial intelligence. An intelligent agent is software that assists people and acts on their behalf. Intelligent agents work by allowing people to:

- delegate work that they could have done to the agent software,
- perform repetitive tasks,
- remember things you forgot,
- intelligently find, filter and summarize complex information,
- customize information to your preferences,
- learn from you and even make recommendations to you.

An agent is an entity capable of **sensing** the **state** of its **environment** and **acting** upon it based on a set of specified **rules** using some problem solving logic. An agent performs specific tasks on behalf of another. In the case of software, an agent is a software program.

The main difference between a software agent and an ordinary program is that a software agent is autonomous; that is, it must operate without direct intervention of humans or others. There are many different types of intelligent software agents.

73 *Curated Machine-Readable Information (also Human-Readable) is the Future*, http://xbrl.squarespace.com/journal/2019/6/14/curated-machine-readable-information-also-human-readable-is.html

76 *Comprehensive Introduction to Intelligent Software Agents for Professional Accountants (DRAFT)*, http://xbrlsite.azurewebsites.net/2016/Library/ComprehensiveIntroductionToIntelligentSoftwareAgentsForProfessionalAccountants.pdf
Intelligent agents can perform sophisticated work. A rational agent is one that acts so as to achieve the best outcome or, when there's uncertainty, the best expected outcome. Rationality as used here refers to following the rules of logical reasoning (problem solving logic), making correct inferences, and selecting the appropriate action that will lead to achieving the desired goal.

Machine-readable business rules are key to creating intelligent software agents that provide the functionality within an expert system.

3.2. Important role of machine-readable business rules

The Merriam-Webster dictionary defines anarchy\(^77\) as “a situation of confusion and wild behavior in which the people in a country, group, organization, etc., are not controlled by rules or laws.” Business rules prevent information anarchy\(^78\).

Business rules guide, control, or influence behavior\(^79\). Business rules cause things to happen, prevent things from happening, or suggest that it might be a good idea if something did or did not happen. Business rules help shape judgment, help make decisions, help evaluate, and help reach conclusions.

Business rules arise from the best practices of knowledgeable business professionals. A business rule is a rule that describes, defines, guides, controls, influences or

otherwise constrains some aspect of knowledge or structure within some problem domain.

Don't make the mistake of thinking that business rules are completely inflexible and that you cannot break rules. Sure, maybe there are some rules that can never be broken. Maybe there are some rules that you can break. It helps to think of breaking rules as penalties in a football game. The point is that the guidance, control, and influence offered by business rules is a choice of business professionals.

Business professionals interact with business rules every day but may not even realize it. Most business rules are in human readable form. But business rules can be represented in both human-readable form and machine-readable form. With the move to digital, more and more business rules are being represented in both human readable form and more importantly machine-readable form. Machine-readable business rules help automate processes which have been manual in the past.

Key to making an expert system or intelligent software agent work is business rules80 of the domain being put into machine-readable form.

Business rules provide a thick metadata layer that enables computer systems to perform useful work. The more business rules that exist, the more work a computer system can perform.

A simple example of a business rule is “Assets = Liabilities and Equity”, the accounting equation. An example of a more comprehensive set of business rules is accounting and reporting checklists81 that are used by professional accountants to create external financial reports. Today, these business rules are organized in the form of a human-readable accounting and disclosure checklist which are used as a memory jogger by professional accountants creating a financial report. In the future this information will be organized as machine-readable business rules that guide expert systems software82.

Assertion is a synonym for rule.

3.3. **Humans and machines augmenting each other**

Who is the world chess champion today; a computer or a human? In 1997, IBM’s Deep Blue83 took the title. Today, a computer is no longer the world chess champion. Neither is a human. Today, a team of computers and humans working together can beat any computer or any human working alone.

That is how the power of computers will be harnessed in the Digital Age; by human and computer teamwork. Human are good at some tasks; not as good at other tasks. Computers are good at some tasks; not as good at other tasks. Teaming humans and computers together and leveraging the strengths of each is how work will get done in the future. In the first industrial revolution, steam engines amplified

the power of or muscles. In the fourth industrial revolutions, computers will amplify the power of our brains84.

An expert system is a type of knowledge based system. Simply put, a knowledge based system85 is a system that draws upon the knowledge of human experts that has been represented in machine-readable form and stored in a fact database and knowledge base. The system applies problem solving logic using a problem solving method to solve problems that normally would require human effort and thought to solve. The knowledge based system supplies an explanation and justification mechanism to support conclusions reached by the knowledge base system and presents that information to the user of the system.

An expert system, knowledge based system, and logical system86 are all synonyms.

3.4. Zero-defect XBRL-based digital financial report

The notion of a Zero Defect XBRL-based digital financial report creation is a collection of values, principles, techniques, and practices87. It is a philosophy. It is a method88. The objective is to create an XBRL-based digital financial report which is free from objective mistakes such as logical, mechanical, and mathematical defects. The philosophy is a means to achieving the objective.

Having financial reports free from such easy to agree with objective mistakes lets professional accountants and analysts that interact with such reports be confident in the meaning of the underlying facts being conveyed by the report so that they can focus on the subjective aspects where they add the most value, areas where computer assisted verification of financial reports is impossible because of the limitations of computer capabilities in processing information89.

Machine-readable business rules provide a safety net of direct evidence to support report quality and compliance with reporting standards and regulatory rules. With this approach, near zero defects (Sigma level 690, 99.99966\% correct) is achievable at a lower cost and higher quality than current manually oriented approaches. Further, quality is verifiable whereas under current approaches since measurements cannot really be taken true quality levels are unknown.

84 Shelley Palmer, *Stop Saying AI Can’t Replace Humans*, https://www.linkedin.com/pulse/stop-saying-ai-cant-replace-humans-shelly-palmer

89 To understand that a computer's ability to process information is not infinite, please read *Comprehensive Introduction to the Notion of Problem Solving Logic*, http://xbrlsite.azurewebsites.net/2016/Library/ComprehensiveIntroductionToNotionOfProblemSolvingLogicForProfessionalAccountants.pdf

90 Wikipedia, *Six Sigma, Sigma Levels*, retrieved November 12, 2016, https://en.wikipedia.org/wiki/Six_Sigma#Sigma_levels
And so, the financial report is verified with the assistance of automated business rules and all such business rules must pass. Business rules are suggestive evidence that a financial report has no logical, mechanical, or mathematical defects. Passing all business rules is not definitive proof that a report is 100% correct in all regards (because business rules could be missing), but the business rules are certainly an excellent first line of defense and if the appropriate business rules are created a very high comfort level is achievable.

This leaves professional accountants to focus on the subjective areas which are beyond the capabilities of machine-based processes to verify.

3.5. Example of business rules guiding report creation

A simple example helps you understand how business rules provide leverage. This simple example highlights the difference between the current approach used to create financial reports in unstructured form or even a structured form and a process where business rules drive the report creation process fewer defects at a lower overall cost.

Current approach:

- Step 1: Provide fact "Assets".
- Step 2: Provide fact "Liabilities and equity"
- Report complete.

Given the steps above, what prevents the creator of a financial report from creating the fact "Assets" with a value of say 1,000; creating the fact "Liabilities and equity" with a value of "1,500"; and then submitting that report to the SEC or other regulator? Nothing prevents the report error above from being submitted to a regulator, even though the report violates the accounting equation. And that is exactly the sort of thing that is going on with XBRL-based public company financial filings to the SEC93.

Business rules driven approach:

- Step 1: Create business rule: "Assets = Liabilities and equity"
- Step 2: Create fact "Assets"
- Step 3: Create fact "Liabilities and equity"
- Report complete.

The business rule prevents facts that would violate the accounting equation from inadvertently being created. Software uses the business rule created in Step 1 to monitor the report creation process. Given these steps above, it is impossible to create a financial report that violates the logical relationship specified by the accounting equation, a fundamental rule of accounting. Now, this one rule is provided only as a basic and easy to understand example.

3.6. Understanding that XBRL is a New Knowledge Media

In a paper published by XBRL International way back in 2009 written by Ralf Frank, *XBRL – the medium is the message*[^94], XBRL was referred to as a new medium.

A medium or media is simply a means of doing something.

Most people think about XBRL in terms of what it is. Using that definition, XBRL is a **global technical syntax for exchanging information**. Another way of looking at XBRL is in terms of the **value it provides**. Using that definition, XBRL imparts knowledge. XBRL is a new medium. XBRL is a **knowledge media**.

A media moves information from a "knowledge bearer" to a "knowledge receiver". A **knowledge bearer** imparts some knowledge to a **knowledge receiver** via some **knowledge media**.

In his book, *Systematic Introduction to Expert Systems*[^95], Frank Puppe discusses the notion of knowledge media. This figure below, a modified version inspired by Frank Puppe's Figure 3.2, shows some knowledge media in order to contrast some specific advantages and disadvantages of the different media. This will help you see the value of the XBRL knowledge media:

[^95]: Frank Puppe, *Systematic Introduction to Expert Systems*, Figure 3.2, page 21. https://books.google.com/books?id=_kKgCAAAQBAJ
A few different knowledge media include “Word of Mouth”, a “Book”, a “Video”, or “XBRL”. Those are just a few knowledge media to help make a point. Here is a summary of some of the advantages and disadvantages of the list of knowledge media:

- **Direct contact between knowledge bearer and knowledge receiver**: With some media you need direct contact between the bearer and receiver of knowledge. For example, with *Word of mouth* you generally need direct contact. With a *Book*, a *Video*, or *XBRL* you don’t need direct contact.

- **User control over information access**: *Word of mouth*, *Book*, and *Video* all tend to be sequential access to the information. You tend to receive information in a specific order. With *XBRL*, it is easy to reorder or reconfigure information. The user can easily control the order of information access.

- **Verifiability of information**: Verifying the information you receive is possible using any media. However, because *XBRL* is machine-readable; automated testing can be used to verify information and experimentation is easy. For example, I can test the complete set of *XBRL*-based public company financial filings using software in a matter of a few hours. *Word of mouth*, *Book*, and *Video* media is not machine-readable.

- **Testing information ambiguity**: Because *XBRL* is machine-readable in terms of meaning but *Word of mouth* is not machine-readable and *Book* and *Video* are not machine-readable in terms of meaning; *XBRL* can be used to measure the ambiguity of information conveyed. The effects of vagueness and poorly articulated information can be made very clear using testing, and so such ambiguity can be minimized between the knowledge receiver and knowledge bearer.

- **Information fidelity**: Fidelity is the degree of exactness with which something is copied or reproduced. With *Word of mouth* the fidelity tends to be maximized because the bearer and receiver are communicating directly. If there are issues in understanding, questions can be asked. With a *Book* or *Video*, there tends to be a bit less fidelity perhaps. With *XBRL*, because information is converted from what is more an analog (paper) to a digital representation, there might be a loss of fidelity if the digitization is not done well. It is sort of like the difference between a record which is analog, a CD which is digital format, and a MP3 which is compressed digital format. The price you pay for the smaller MP3 files is lost fidelity, but what is lost is the frequencies far beyond a human’s ability to hear. Everything is a tradeoff.

- **Reach versus richness**: In their book *Blown to Bits*, Philip Evans Thomas S. Wurster point out the new economics of information. In the past, you could have reach or richness, but typically not both at the same time. The internet completely changed this economic equation. **Reach** is access to information. **Richness** to quantity, timeliness, accuracy and variety of information. *Word of mouth* tends to be the richest information, but the reach

can be lower. *Books* have excellent reach, but less richness. With *XBRL* you can have excellent reach and richness.

In order to make use of a knowledge media effectively, the following three conditions must be satisfied:

1. **Easy for knowledge bearer to represent information:** The effort and difficulty required for the knowledge bearer to successfully formulate the knowledge in the medium must be as low as possible.

2. **Clear, consistent meaning:** The meaning conveyed by the knowledge bearer to the knowledge receiver must be clear and easily followed by human beings and be consistent between different software applications. The result cannot be a "black box" or a guessing game and users of the information should not be able to derive different knowledge simply by using a different software application.

3. **High-quality information representation:** The form in which the knowledge is represented to the receiver must be as good as possible. The quality must be high whether the knowledge receiver is a human-being or an automated machine-based process. Sigma level 6 is a good quality benchmark, 99.99966% accuracy.

The knowledge conveyed by a zero-defect intelligent XBRL-based digital financial report as to the financial condition and financial position of an economic entity is just an example of the capabilities of the XBRL knowledge media. Digital business reports of other sorts are possible also. Think semantic spreadsheets\(^98,99\).

To make XBRL work effectively, it is important to help software creators to achieve #1, #2, and #3 above in the software applications that they create.

3.7. Benefits offered by expert systems

In the future, the accounting and reporting rules will exist in both human-readable and machine-readable form and will drive the expert systems and intelligent software agents which professional accountants use to create financial reports. Benefits from the use of expert systems and intelligent software agents include:

- **Automation:** elimination of routine, boring, repetitive, mundane, mechanical tasks that can be automated

- **Consistency:** computers are good at performing repetitive, mechanical tasks without variation whereas humans are not; computers do not make mistakes and are good at repeating exactly the same thing each time

- **Diligence and tenacity:** computers excel at paying attention to detail; they never get bored or overwhelmed and they are always available and will keep doing their job until the task is complete with the same attention to detail

- **Reduced down-time:** computer based expert systems are tireless and do not get distracted

Availability: such computer based expert systems are always available simultaneously in multiple places at one time; you get quick response times and can replace absent or scarce experts

Training: the best practices of the best practitioners can be available to those that are new to and learning about a domain of knowledge

Longevity and persistence: computer based expert systems do not change jobs or retire so knowledge gathered by an organization can remain within that organization

Productivity: computer based expert systems are cheaper that hiring experts and costs can be reduced at the same time that quality increases resulting in increased productivity

Multiple opinions: Systems can integrate the view of multiple experts within a single system and choose between the preferred view of multiple expert opinions in the same system

Objectivity: computers apply the same inductive and deductive logic consistently; emotion and personal preferences can be eliminated where they should be eliminated

Critical to understanding the sorts of tasks that expert systems will be capable of performing and should not or will never be able to perform takes the understanding of a domain professional. While computer based expert systems can effectively automate some work, this does not imply that these systems will automate all work or replace humans. They simply won’t because they cannot. Computers are dumb beasts. There is a difference between subjectivity and objectivity; there is a difference between a mechanical task and a task requiring professional judgement. Professional accountants need to understand the difference.

3.8. Automating “the last mile” of disclosure management

So exactly what can be automated? A lot of people are referring to what we call digital financial reporting as disclosure management.

Mike Willis, a PWC partner, wrote an article Disclosure management: Streamlining the Last Mile which explains how software applications can enable a streamlining of current “last mile” manual financial report assembly and review processes. He points out that companies can increase net benefits by gaining a clear understanding of common areas where opportunities exist for financial reporting process enhancement. This is a summary of what a disclosure management system needs to do, per Willis:

An effective disclosure management implementation should enable many of the capabilities and process enhancements such as:

- automated spreadsheet assembly;
- automated report assembly;
- automated report validation;

100 Comprehensive Introduction to Knowledge Engineering for Professional Accountants, http://xbrlsite.azurewebsites.net/2016/Library/ComprehensiveIntroductionToKnowledgeEngineeringForProfessionalAccountants.pdf

automated narrative text generation;
contextual review process;
amazon XBRL reports;
amazon benchmarking;
explicit references;
collaborative review processes;
virtual service center.

What Willis is pointing out is only the tip of a much bigger iceberg.

3.9. **Internal controls over financial reporting**

In their document *Guide to Internal Control over Financial Reporting*, the Center for Audit Quality provides this fundamental definition of internal control over financial reporting (ICFR):

“In simple terms, a public company’s ICFR consists of the controls that are designed to provide reasonable assurance that the company’s financial statements are reliable and prepared in accordance with GAAP.”

Whether a report is paper-based information published for the consumption of humans or machine-readable information formatted for the consumption by automated computer-based processes; processes, procedures, systems, and tools for creating XBRL-formatted digital financial reports must result in statements that are reliable and prepared in accordance with GAAP.

XBRL-formatted information is not part of an audit yet. Most people today are more comfortable with some sort of document such as the current HTML submissions of public companies to the XBRL or the Inline XBRL that combines the human-readable and machine-readable information in one document. What happens when only the XBRL-based information is used? Some reports are already only provided in the XBRL format to regulators.

It seems to me that it could be quite appropriate for auditors to include a point in their management representation letters for 10-K audit and 10-Q review engagements related to XBRL-formatted information. This is a very practical way for CPAs to educate their clients about XBRL, encourage their clients to get their XBRL right, and if nothing else it proves that auditors addressed this subject with their clients, that the clients are aware of SEC filing requirements and potential sanctions regarding XBRL (i.e. the XBRL is “filed” and is subject to SEC review and enforcement action if there are XBRL errors), and the auditors have no responsibility for the XBRL as it is not (yet) part of an audit.

The fact is, if auditors had responsibility to attest over XBRL-formatted documents I don’t think they could do a good job. Why? Auditors cannot be held responsible because auditors don’t currently have the appropriate skills to understand if financial information is correctly represented and conveys meaning intended of the information provided by the financial report. Further, tools are not currently up to the task of assisting external financial reporting managers, internal auditors,

102 Center for Audit Quality, *Guide to Internal Control Over Financial Reporting*,
http://www.thecaq.org/sites/default/files/caq_icfr_042513.pdf
103 Comprehensive Introduction to Knowledge Engineering for Professional Accountants,
http://xbrlsite.azurewebsites.net/2016/Library/ComprehensiveIntroductionToKnowledgeEngineeringForProfessionalAccountants.pdf
independent auditors, or other business professionals that need to be certain what meaning is being conveyed. Proof of this is errors in the reports of XBRL-based reports created by public companies. But information quality is slowly improving however. Skills and tools will evolve over time and enable high-quality XBRL-based financial reports to be created, reviewed, and assured by independent third parties.

That said; it is still appropriate for external reporting managers to understand principles for creating zero-defect XBRL-based financial reports and guidance published by authorities such as the AICPA related to the creation of such reports. The current time is a great time to practice and gain the skills before the time comes when professional accountants and auditors will be held accountable.

While XBRL-based reports submitted to the SEC are not currently required to be audited; reports submitted to ESMA must be audited at both the human-readable layer and the machine-readable layer. It is only a matter of time until all XBRL-based financial reports will be required to be audited.

3.10. Digitizing financial reports

In an interview with *Wired* magazine, Barak Obama (yes, the president of the United States discussing artificial intelligence) made the following statement about self-driving cars:

“There are gonna be a bunch of choices that you have to make, the classic problem being: If the car is driving, you can swerve to avoid hitting a pedestrian, but then you might hit a wall and kill yourself. It’s a moral decision, and who’s setting up those rules?”

And so, how do you actually make digital financial reporting work? This example which relates to self-driving cars points out something important that accounting professionals need to consider when thinking about XBRL-based digital financial reports: who writes the rules?

Professional accountants have to understand that this is an engineering process. Professional accountants need to understand a few things about knowledge engineering. Professional accountants need to understand how a problem solving logic works and how the rules and logic interact to make computers do their work. This will help them understand how to get computers to serve their needs. Second,
you have to have a framework and theory110 to think about digital financial reports. Without a framework and theory, all that you have to work with is the XBRL technical syntax. That will not work because that level of digital financial reporting is too technical and impossible for the average business professional to understand. That is why professional accountants need to learn a few new things and understand the framework and theory of a digital financial report.

3.11.

Digitizing financial report audit schedules

In a paper Data and Technology: Transforming the Financial Information Landscape111, the CFA Institute describes the currently inefficient system used to create financial reports and calls for a broader and deeper use of structured data to achieve greater efficiencies.

Further, the CFA Institute points out that the financial report audit process can be more effective and efficient if a standardized data model for commonly requested audit and other information were used. The CFA Institute points112 to the American Institute of Certified Public Accountants (AICPA) Audit Data Standards113 as a set of such standard audit schedules.

3.12.

Broader trend of digital business reporting

A financial report is a type of business report. Digital financial reporting is part of a much broader trend which is digital business reporting. A digital business report is the electronic spreadsheet114 reimagined. Add to this the technology offered by digital distributed ledgers115. Some people use the term triple-entry accounting116. Imagine a semantic spreadsheet which is like a mini-expert system which any business professional can create and use.

We are in the midst of the fourth industrial revolution117. Here is a list of the four industrial revolutions which will help you understand where we are today:

1. Mechanization, water power, steam power.
2. Mass production, assembly line, electricity.

111 CFA Institute, Data and Technology: Transforming the Financial Information Landscape, page 5, https://www.amazon.com/Data-Technology-Transforming-Financial-Information/dp/194271324X/
112 CFA Institute, Data and Technology: Transforming the Financial Information Landscape, page 14, https://www.amazon.com/Data-Technology-Transforming-Financial-Information/dp/194271324X/
113 American Institute of Certified Public Accountants (AICPA), Audit Data Standards Library, https://www.aicpa.org/interestareas/frc/assuranceadvisoryservices/pages/auditdatastandardworkinggroup.aspx
4. Cyber physical systems.

In their paper *Imagineering Audit 4.0*[^118], Jun Dai and Miklos Vasarhelyi of Rutgers University provide a comprehensive and complete description of how industry will work in the future and therefore why a knowledge media such as XBRL is a critical required part of the information infrastructure for turning their vision into a reality.

Dai and Vasarhelyi describe Industry 4.0 as follows:

> Originating in Europe and spreading to the US, Industry 4.0 emphasizes six major principles in its design and implementation: interoperability, virtualization, decentralization, real-time capability, service orientation, and modularity. The objective of Industry 4.0 is to increase the flexibility of existing value chains by maximizing the transparency of inbound and outbound logistics, manufacturing, marketing, and all other business functions such as accounting, legislation, human resource, etc.

Basically, what Industry 4.0 means is that technologies will be used to dramatically improve the efficiency and effectiveness of businesses and other organizations. What does this mean? Some say[^119] that it means 47% of jobs in the United States are at risk from automation.

No one knows exactly what this fourth industrial revolution will mean, but based on the other three I think the fourth will turn out just fine if you make sure your skill set is up-to-date. Information barbarians will likely not fare well. It is far better to understand digital.

But let's get back to XBRL's role in Industry 4.0. On page 16 of the paper, in the section titles "Standardization of information and data", Dai and Vasarhelyi point out the important role standards play in this new world:

> To facilitate information exchange and analysis in Audit 4.0, regulators and standardization agencies should create suitable standards that define the formats and naming rules of commonly used data.

On page 14, the role of pre-determined business rules is pointed out:

> In addition, business processes will be monitored against pre-determined rules to detect violations of key controls, and cross-verified via certain continuity equations.

Business rules prevent anarchy[^120]. For increased efficiency and effectiveness in business processes to be realized, business information exchange will need to work correctly. For meaningful machine-based information exchange to work, you need pre-determined rules relating to technical syntax, domain semantics, and workflow. It really is that straight forward. This set of principles helps you understand the details.

Further, while it might not seem to be the case because of quality issues; XBRL-based reporting by public companies to the SEC helps accountants and others figure out how to use these sorts of technologies. It is actually rather amazing that about 7,000 different companies can represent rather complex financial information and communicate that information to the SEC and get 98.96% of that information right. On average, 84.7% of companies get all of the measured information right, and a set of 8 software vendors manage to get 97% of more of their reports correct as measured by the checks that I perform.

But 98.96% is not good enough. What is good enough? Six sigma is one target manufacturing has used, that is 99.99966% of everything being correct. Is that good enough for information-based processes? Well, it is a good minimum target to shoot for currently.

We won’t go into any more detail at this point; we only wanted to mention this broader trend to help you tie all these pieces together in your mind.

3.13. Standard Business Report Model (SBRM)

The Object Management Group (OMG) is taking XBRL-based business reports to a new level, leveraging what has been learned from creating XBRL-based financial reports over the past 10 years. The Standard Business Report Model (SBRM) is described as follows:

“SBRM formally documents a logical conceptualization of a business report in both human-readable and machine-readable models.”

SBRM goes on to explain that through the use of standard models, business experts can define the structure and content of their reports and extensions using high-level logical business report objects, possibly presented in the form of semantic spreadsheets and pivot tables rather than with lower level technical syntax.

While XBRL has mainly been employed for financial reporting, leveraging the nature of financial accounting rules; digital business reporting will benefit from the capabilities pioneered by XBRL-based financial reporting. Further, business reporting will not be limited to only one syntax but rather the arbitrary preferred syntax of can be used and systems can still be consistent with one conceptual model of a business report.

Financial reporting will likewise benefit from SBRM because SBRM helps business professionals and technical professionals constructing systems where flexible reporting is a requirement to effectively control variability and still have high-quality information exchanges.
