1. **Introduction to Conceptual Model of a Digital Financial Report**

Frameworks\(^1\) help communication and understanding.

What are conspicuously missing from the minds of most professional accountants and software engineers are a framework\(^2\) and a theory\(^3\) relating to how to think about digital financial reports.

This section provides and explains that framework and theory. It provides a high-level overview of the general purpose financial report and how to model an XBRL-based version of such a general purpose financial report.

1.1. **Essence of a general purpose financial report**

A general purpose financial report is a high-fidelity, high-resolution, high-quality information exchange mechanism. The report is a compendium of complex logical information required by statutory requirements and regulatory rules plus whatever management of an economic entity wants to voluntarily disclose. The report represents quantitative and qualitative information about the financial condition and financial performance of an economic entity. There are a number of different financial reporting schemes\(^4\) that might be used to create that report: US GAAP, IFRS, IPSAS, GAS, FAS, etc.

Financial reports are not uniform. Financial reports are not forms, they have variability. This consciously allowed variability is an essential, characteristic trait of robust reporting schemes such as US GAAP, IFRS, and others. This variability contributes to the richness, high-fidelity, and high-resolution of reported financial information that is unique to an industry sector, a style of reporting, or an economic entity. This variability is a feature of such reporting schemes. Different reporting styles, different subtotals used to aggregate details, and using some specific approach given a set of allowed alternatives are examples of variability. Variability does not mean “arbitrary” or “random”. There are known identifiable patterns.

Consider the following use case of a general purpose financial report:

Two economic entities, A and B, each have information about their financial position and financial performance. They must communicate their information to an investor who is making investment decisions which will make use of the combined information so as to draw some conclusions. All three parties (economic entity A, economic entity B, investor) are using a common set of basic logical principles (facts, statements, deductive reasoning, inductive reasoning, etc.), common financial reporting standard concepts and relations

(i.e. US GAAP, IFRS, IPSAS, etc.), and a common world view so they should be able to communicate this information fully, so that any inferences which, say, the investor draws from economic entity A's information should also be derivable by economic entity A itself using basic logical principles, common financial reporting standards (concepts and relations), and common world view; and vice versa; and similarly for the investor and economic entity B.

The following is a set of principles related to a general purpose financial report:

- A general purpose financial report is a high-fidelity, high-resolution, high-quality information exchange mechanism.
- Prudence dictates that using information from a financial report should not be a guessing game.
- All formats conveying information should convey the exact same meaning be that format paper, e-paper, or some machine readable format.
- Explicitly stated information from information bearers or reliably derived information is preferable to requiring information receivers to make assumptions.
- Double entry accounting enables processes that allow for the detection of information errors and to distinguish errors (unintentional) from fraud (intentional).
- Catastrophic logical failures are to be avoided at all cost as they cause systems to completely fail.

Depicted graphically; the essence of what is taking place when an economic entity, an information bearer, provides information to some information receiver such as an investor, regulator, or lender; is such:

All of this can be described logically in a manner that is easy for a professional accountant to understand. A logical theory, such as the Logical Theory Describing a Business Report, defines and describes things. A general purpose financial report is a specialization of the more general business report.

Rules are used to articulate allowed variability and “channel” creators of reports in the right direction and therefore control variability, keeping the variability within...

standard limits. That keeps report quality where it needs to be. Rules enable things like preventing a user from using a concept meant to represent one thing from unintentionally being used to represent something different. Further, the discipline of describing something in a form a computer algorithm can understand also assists you in understanding the world better; weeding out flaws in your understanding, myths, and misconceptions about accounting and reporting standards.

To understand the above method, I created a project which represents a portion of the International Public Sector Accounting Standards (IPSAS) step-by-step using that method\(^7\).

1.2. Financial Report Semantics and Dynamics Theory

A theory describes absolutes. Theories are the real thing. A theory describes the object of its focus. A theory does not simplify. Theories are irreducible, the foundation on which new metaphors can be built. A successful theory can become a fact. A theory describes the world and tries to describe the principles by which the world operates. A theory can be right or wrong, but it is characteristic by its intent: the discovery of essence.

The Financial Report Semantics and Dynamics Theory\(^8\) provides a formal set of self-evident logical principles that no one would argue with (called axioms) and deductions which can be proven by constructing a chain of reasoning by applying axioms (called theorems) and then provides verification that these axioms and theorems hold up against a set of 8,098 XBRL-based financial reports submitted to the Securities and Exchange Commission by public companies which show that these logical principles are true about financial reports.

Axioms and theorems assert knowledge. Constraints are restrictions on existing knowledge. Constraints can be used to detect incomplete information. Constraints can be used to check knowledge for inconsistencies and contradictions.

The theory provides additional information such as an ethics or worldview of a financial report which helps tie other important information together.

The theory also explains the dynamics or “mechanics” or the mechanical nature of a financial report. While the information expressed by a financial report is far from mechanical, the mechanism by which the information is expressed is that using printed paper or some digital technology is in fact mechanical.

To obtain a thorough understanding of the theory you are encouraged to read through the entire Financial Report Semantics and Dynamics Theory.

The remainder of this section articulates information from that theory which helps one to understand the pieces of a financial report and how the pieces interact with one another. This section uses broad brush strokes to paint the high-level big picture. Subsequent sections dive into the details.

First we define the pieces of a financial report and relations between the pieces. We will then provide a narrative which helps the reader better comprehend those pieces and relations.

1.3. Visual representation of logical model of financial report

The following is a visual image of the pieces that make up a financial report and the relationship between those pieces:

The remainder of this document strives to explain the pieces that make up a financial report and the relations between those pieces that are useful to business professionals and software engineers that are trying to create software to be used to create or work with an XBRL-based digital general purpose financial report. For additional details, please refer to the chapter Financial Report Object Properties. Software engineers might find the chapter Reconciliation of Models helpful. Software engineers will likely find the Conceptual Model helpful.

1.4. **Understanding that conceptual models help understanding**

Conceptual models help communication and understanding. Every professional accountant understands the electronic spreadsheet which has a high-level conceptual model: workbooks, spreadsheets, rows, columns, and cells:

![Spreadsheet diagram](image)

Just like the workbooks, spreadsheets, columns, rows, and cells of a spreadsheet help you understand, describe, and relate to electronic spreadsheets; the multidimensional conceptual model helps you relate to XBRL-based digital financial reports conceptual model.

1.5. **Digital financial reports follow the multidimensional model**

Professional accountants work with multidimensional information every day and generally don’t realize that fact. In fact, many things are inherently multidimensional. Information reported in a financial report is absolutely multidimensional.

You might be familiar with the term multidimensional from business intelligence (BI) software. BI terms tend to represent the technical artifacts that are used to represent real world business phenomenon. Our terms describe the business phenomenon themselves, not a technical implementation. Further, BI dimensional model which is based on online analytical processing (OLAP) works slightly differently than our model which describes how the real world works. For example, in the real world there are numbers, text, and prose; but OLAP is focused only on numbers. In the real world, financial reports provide facts that represent totals; but in OLAP totals are calculated on the fly. Our model describes the real world. BI describes an implementation. Further, BI is non-standard so every implementation can use different terms and our model is based on XBRL, a global standard.

13 YouTube, *Introduction to the Multidimensional Model for Professional Accountants*, https://www.youtube.com/watch?v=A5AAruLUud4
1.6. **Basic logical conceptualization of a financial report**

A scalar is a fact which has no characteristics; it stands on its own. For example, the value of pi is a scalar, the value never changes; it always has the same value for everyone. (Pi or π is the ratio of a circle’s circumference to its diameter and always has the value of equal to 3.14)

A financial **report** communicates facts. A **fact** defines a single, observable, reportable piece of information contained within a financial report, or **fact value**, contextualized for unambiguous interpretation or analysis by one or more distinguishing characteristics or aspects. For example, below are two facts with the values of “2,000” and “1,000”. However, the two facts above are not contextualized.

An **aspect** describes a fact. An aspect provides information necessary to describe a fact or distinguish one fact from another fact within a report. For example, below you see the concept aspect of the numbers “2,000” and “1,000” which relates to the concepts “Revenues” and “Net income” respectively:

To fully describe a fact you need more than just one aspect. In XBRL-based financial reports, a fact must always provide three **core aspects**: reporting entity that reported the fact, calendar period of the reported fact, and the concept that describes the reported fact. Below you see two facts which are characterized by three core aspects which are used to differentiate the two facts from one another.

In XBRL-based financial reports, in addition to the core aspects that you always must use, creators of reports can also provide additional **noncore aspects**. A noncore
aspect is simply some additional aspect that is created to further distinguish facts beyond the capabilities of the three core aspects. Below you see the noncore aspect “Legal Entity Aspect” has been added to the two facts we have been working with:

<table>
<thead>
<tr>
<th>Reporting Entity Aspect</th>
<th>Legal Entity Aspect</th>
<th>Calendar Period Aspect</th>
<th>Concept Aspect</th>
<th>Fact Value</th>
<th>Units</th>
<th>Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Company</td>
<td>Consolidated entity</td>
<td>Jan 1, 2019 to Dec 31, 2019</td>
<td>Revenues</td>
<td>2,000</td>
<td>US Dollars</td>
<td>Thousands of dollars</td>
</tr>
<tr>
<td>ABC Company</td>
<td>Consolidated entity</td>
<td>Jan 1, 2019 to Dec 31, 2019</td>
<td>Net income</td>
<td>1,000</td>
<td>US Dollars</td>
<td>Thousands of dollars</td>
</tr>
</tbody>
</table>

Fact values can be numeric\(^{20}\) or nonnumeric\(^{21}\). Numeric fact values require additional information to describe the units of the numeric fact and the rounding that is used to report the numeric fact. **Units**\(^{22}\) and **rounding**\(^{23}\) are properties of the fact value that provide information necessary to describe numeric fact values. Below you see that the units of “US Dollars” and that the rounding of “Thousands of dollars”:

<table>
<thead>
<tr>
<th>Reporting Entity Aspect</th>
<th>Legal Entity Aspect</th>
<th>Calendar Period Aspect</th>
<th>Concept Aspect</th>
<th>Fact Value</th>
<th>Units</th>
<th>Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Company</td>
<td>Consolidated entity</td>
<td>Jan 1, 2019 to Dec 31, 2019</td>
<td>Revenues</td>
<td>2,000</td>
<td>US Dollars</td>
<td>Thousands of dollars</td>
</tr>
<tr>
<td>ABC Company</td>
<td>Consolidated entity</td>
<td>Jan 1, 2019 to Dec 31, 2019</td>
<td>Net income</td>
<td>1,000</td>
<td>US Dollars</td>
<td>Thousands of dollars</td>
</tr>
</tbody>
</table>

To summarize where we are thus far and to be crystal clear; below you see one fact. That single fact is characterized by a set of four aspects. The numeric fact value is described as having units of “US Dollars” and that the fact value is rounded to the nearest “Thousands of dollars”:

<table>
<thead>
<tr>
<th>Reporting Entity Aspect</th>
<th>Legal Entity Aspect</th>
<th>Calendar Period Aspect</th>
<th>Concept Aspect</th>
<th>Fact Value</th>
<th>Units</th>
<th>Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC Company</td>
<td>Consolidated entity</td>
<td>Jan 1, 2019 to Dec 31, 2019</td>
<td>Revenues</td>
<td>2,000</td>
<td>US Dollars</td>
<td>Thousands of dollars</td>
</tr>
</tbody>
</table>

A **fact set**\(^{24}\) is a set of facts which go together (tend to be cohesive and share a certain common nature) for some specific purpose within a financial report. A common synonym for fact set is fact table. The term block is a synonym for fact set. Below you see three facts that make up a fact set that are used to describe the breakdown of revenues by geographic area.

\(^{22}\) Units, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Units.html

\(^{24}\) Fact Set, http://xbrlsite.azurewebsites.net/2019/Framework/Details/FactSet.html
Rules25 guide, control, suggest, or influence behavior. Rules cause things to happen, prevent things from happening, or suggest that it might be a good idea if something did or did not happen. Rules help shape judgment, help make decisions, help evaluate, help shape behavior.

Don't make the mistake of thinking that rules are completely inflexible and that you cannot break rules. Sure, maybe there are some rules that can never be broken. Maybe there are some rules that you can break. It helps to think of breaking rules as penalties in a football game. The point is that the guidance, control, suggestions, and influence offered by business rules are a choice of business professionals. The meaning of a rule is separate from the level of enforcement someone might apply to the rule.

A rule states a fact about the world. A synonym for rule is assertion.

So, considering our fact set below we know that the value “2,000” is for the concept “Revenues”, for the period “Jan 1, 2019 to Dec 31, 2019”, relates to the legal entity “Consolidated entity”, of the reporting entity “ABC Company” and is the total of all “Geographic Areas”. “North America” and “South America” are part of the whole “All Geographic Areas Combined”. A rule that expresses that relationship might be expressed as:

“All Geographic Areas Combined = North America + South America”.

Rules both describe and can be used to verify that reported facts are consistent with the provided description. There are many different types of rules including mathematical, structural, mechanical, logical, and accounting related rules.

Grain26 is the level of depth of information or granularity. The lowest level of granularity is the actual transaction, event, circumstance, or other phenomenon

25 Rule, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/Rule.html}
26 Grain, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/Grain.html}
represented as the actual transaction within an accounting system. The highest level of granularity is the summarized information that is represented as a line item of say the income statement.

Considering the fact set you see below the fact outlined in red is one level of granularity as contrast to the other two facts that are outlined in green which provides the same information as is provided by the fact outlined in red, but at a different level of granularity.

And so hopefully you get an idea of the logical model of a financial report. Now we want to shift gears a bit and be a bit more specific as to how financial reports are represented using XBRL.

An information model definition is created to represent each fragment of a report using the XBRL format. The following pieces, or report elements, are used to construct the information model description: Network, Table, Axis, Member, Line Items, Abstract, and Concept.

Below you see the information model description of the structure of a fragment of a report, in this case one fact set which is used to describe the components of inventory:

30 Table, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Table.html
32 Member, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Member.html
Something is important to point out. We mentioned that in XBRL you have core aspects and noncore aspects. In the typical software application created today, the core aspects reporting entity and calendar period are not represented in the information model description that is typically created by software applications.

Below you see a truer information model description which includes the reporting entity and the calendar period. Also, per the US GAAP XBRL Taxonomy, the IFRS XBRL Taxonomy the term “[Axis]” is used as a synonym of “Aspect”. Axis and aspect are synonyms and mean the same thing. Also “Period” and “Calendar Period” are the same thing.

Another part of the information model description is the mathematical rules that are used to describe and verify the roll up relations of the concepts that are a part of the information model description. Here is the roll up relations that are part of this information model description.

Another part of the information model description is the facts within the fact set themselves. Here is the fact set or the fact table\(^\text{36}\) for the facts that go with the information model description provided above.

A software application takes the information model description structure, the information model description rules provided, the facts that are included within the fact set, and known best practices for rendering a business report that are coded into

\(^{36}\) Fact Table, TO DO...
the software application in some manner and then generates a human-readable rendering of the reported information for a fragment or fact set of a report.

The following is the rendering37 of the inventory components disclosure that we are working with above:

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
\textbf{Concept (Aspect)} & \textbf{Period (Aspect)} & \\
& 12/31/2020 & 12/31/2019 \\
\hline
\textbf{Finished Goods} & 600,000 & 600,000 \\
\textbf{Work in Progress} & 300,000 & 300,000 \\
\textbf{Raw Material} & 100,000 & 100,000 \\
\textbf{Inventory} & 1,000,000 & 1,000,000 \\
\hline
\end{tabular}
\end{table}

Different software applications will provide slightly different renderings using the same XBRL-based input information.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|}
\hline
\textbf{Inventory, by Component [Roll Up]} & 2010-12-31 & 2009-12-31 \\
\hline
\textbf{Finished Goods} & 600 & 600 \\
\textbf{Work in Progress} & 300 & 300 \\
\textbf{Raw Material} & 100 & 100 \\
\textbf{Inventory} & 1,000 & 1,000 \\
\hline
\end{tabular}
\end{table}

Here is what the information model description looks like in that software application:

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
\textbf{Label} & \textbf{Report Element Class} & \textbf{Period} & \textbf{Balance} & \textbf{Preferred Label Role} & \textbf{Name} \\
\hline
\textbf{Inventory, by Component [Table]} & [Table] & & & & gaap:InventoryByComponentTable \\
\textbf{Legal Entity [Axis]} & [Axis] & & & & frm:LegalEntityAxis \\
\textbf{Consolidated Entity [Member]} & [Member] & & & & frm:ConsolidatedEntityMember \\
\textbf{Inventory, by Component [Line Items]} & [LineItems] & & & & gaap:InventoryByComponentLineItems \\
\textbf{Inventory, by Component [Roll Up]} & [Abstract] & & & & gaap:InventoryByComponentRollUp \\
\hline
\textbf{Finished Goods} & [Concept] & Monetary & As Of & debit & gaap:FinishedGoods \\
\textbf{Work in Progress} & [Concept] & Monetary & As Of & debit & gaap:WorkInProgress \\
\textbf{Raw Material} & [Concept] & Monetary & As Of & debit & gaap:RawMaterial \\
\textbf{Inventory} & [Concept] & Monetary & As Of & debit & gaap:Inventory \\
\hline
\end{tabular}
\end{table}

37 Rendering, TO DO...
Here is what the roll up rule relations representation looks like in that software application:

<table>
<thead>
<tr>
<th>Label</th>
<th>Report Element Class</th>
<th>Balance</th>
<th>Weight</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventory, by Component [Table]</td>
<td>[Table]</td>
<td>0</td>
<td>0</td>
<td>gaap:InventoryByComponentTable</td>
</tr>
<tr>
<td>Inventory</td>
<td>[Concept] Monetary</td>
<td>Debit</td>
<td>0</td>
<td>gaap:Inventory</td>
</tr>
<tr>
<td>Finished Goods</td>
<td>[Concept] Monetary</td>
<td>Debit</td>
<td>1</td>
<td>gaap:FinishedGoods</td>
</tr>
<tr>
<td>Work in Progress</td>
<td>[Concept] Monetary</td>
<td>Debit</td>
<td>1</td>
<td>gaap:WorkInProgress</td>
</tr>
<tr>
<td>Raw Material</td>
<td>[Concept] Monetary</td>
<td>Debit</td>
<td>1</td>
<td>gaap:RawMaterial</td>
</tr>
</tbody>
</table>

Software applications use the rule relations that describe or explain the relations to verify that reported facts are consistent with that explanation. Here is the software application interface for verifying that the reported facts are consistent with the rules that explain the relations between the facts:

Information about the properties of each report element which makes up the information model description should be accessible to the user of the business report:
Information about the properties of each fact which is represented within the report is accessible to the user of the financial report:

This same information is provided for each and every fact set that makes up a financial report. Facts could be used in multiple fact sets. The facts used in fact sets must be consistent within a fact set and between the individual fact sets that make up a report.

1.7. Advanced Logical Conceptualization

A financial report can be broken down into fragments. A fragment38 is a set of one to many fact sets which go together some specific purpose within a report. For example, a balance sheet is a fragment of a financial report that is made up of two fact sets: a roll up of assets and a roll up of liabilities and equity.

Each fact set has a concept arrangement pattern property. A concept arrangement pattern39 specifies the nature of the relationship between the concept aspect of an information model definition.

A set40 is a type of concept arrangement pattern where concepts have no mathematical relations. Essentially, a set is a flat list of concepts. A synonym for set is hierarchy.

A roll up41 is a type of concept arrangement pattern which represents a basic roll up type mathematical relationship: Fact A + Fact B + Fact C = Fact D (a set of items and a total).

A roll forward42 is a type of concept arrangement pattern which represents a basic roll forward mathematical relation: Beginning balance (stock) + change\textsubscript{1} (flow) + change\textsubscript{2} (flow) + change\textsubscript{3} (flow) = Ending balance (stock).

38 Fragment, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Fragment.html
40 Set, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Set.html
An adjustment is a type of concept arrangement pattern which represents a basic mathematical reconciliation between an originally stated value and a restated value usually due to a correction or error: Originally stated balance + adjustment1 + adjustment2 + adjustment3 = restated balance.

A variance is a type of concept arrangement pattern which represents a mathematical difference between two reporting scenarios: Amount (projected scenario) + Amount(variance) = Amount (actual scenario).

A complex computation is a type of concept arrangement pattern which represents any arbitrary mathematical relationship between a set of numeric facts. A complex computation is comprised of some flat set of numeric concepts and a rule that represents the mathematical relation between that set of concepts.

A roll forward info is a type of concept arrangement pattern which represents a non-mathematical relation of information about a roll forward.

A text block is a type of concept arrangement pattern which represents a non-mathematical relationship in the form of prose. A text block concept arrangement pattern is comprised of exactly one concept. There are three sub classes or type of text blocks: Level 1 Note Text Block, Level 2 Policy Text Block, and Level 3 Disclosure Text Block.

Each fact set has a member arrangement pattern property. A member arrangement pattern expresses the relations between members within an aspect other than the concept aspect (which is explained by the concept arrangement pattern).

The members of an axis might be related mathematically. Member aggregation is a type of member arrangement pattern where the members of an axis roll up the same as the roll up concept arrangement pattern. Member flat is a type of member aggregation pattern where the members for a flat list. Member nonaggregating is a type of member arrangement pattern where the members of an axis are not related mathematically but simply are used to differentiate reported facts.

48 Level 1 Note Text Block, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Level1NoteTextBlock.html

49 Level 2 Policy Text Block, http://xbrlsite.azurewebsites.net/2019/Framework/Details/Level2PolicyTextBlock.html

51 Member Arrangement Pattern, http://xbrlsite.azurewebsites.net/2019/Framework/Details/MemberArrangementPattern.html

52 Member Aggregation, http://xbrlsite.azurewebsites.net/2019/Framework/Details/MemberAggregation.html

53 Member Flat List, http://xbrlsite.azurewebsites.net/2019/Framework/Details/MemberFlatList.html

54 Member Nonaggregating, http://xbrlsite.azurewebsites.net/2019/Framework/Details/MemberNonaggregation.html
Reported facts could need additional arbitrary descriptive information. A
parenthetical explanation\(^{55}\) provides additional descriptive information about a
fact. A synonym for parenthetical information is comment.

A financial reporting scheme\(^{56}\) is a formal specification for how financial reports are
to be created and the underlying accounting rules and is usually created by a
standards setter or regulator. For example, US GAAP, IFRS, and IPSAS are all
financial reporting schemes. Financial reports are not forms. Financial reporting
schemes allow for a certain amount of flexibility and variability when reporting
certain specific disclosures or subtotals contained within a disclosure. A disclosure\(^{57}\) is a set of one to many fact sets or a set of one to many fragments
which form an accounting disclosure that is either required by statutory or regulatory
rules or provided at the discretion of a reporting entity. A template\(^{58}\) is a
representation of a possible disclosure that can be used as a prototype in the process
of creating a report. An exemplar\(^{59}\) is a representation of a disclosure from an
existing report of some economic entity that can be leveraged in the process of
creating a report.

Because variability exists in the allowed possible approaches that economic entities
represent their financial disclosures, different economic entities have different
reporting styles. A reporting style\(^{60}\) is a set of relations, consistency crosscheck
rules, mapping rules, and impute rules that are used to check fundamental
accounting concept relations for a specific type of report or style of reporting. For
example, a classified balance sheet and an order of liquidity balance sheet are two
different reporting styles for creating a balance sheet.

A consistency crosscheck rule\(^{61}\) is a type of rule that tests the relations of
fundamental accounting concept relations within a report against a specified
reporting style to make sure there are no inconsistencies or contradictions between
reported facts within a report.

An impute rule\(^{62}\) is a type of rule that explains how to logically derive a fact that
have not been explicitly reported based on other facts that have been explicitly
reported or which have been logically derived from other reported information. For
example, an economic entity might not explicitly report the line item “Noncurrent
assets”; but does report “Assets” and “Current assets”. Given the impute rule
“Assets = Current assets + Noncurrent assets”; the fact value for Noncurrent assets
can be reliably derived logically using the other two reported facts and the impute
rule.

A mapping rule\(^{63}\) is a type of rule that explains how a base reporting scheme
taxonomy concept reported by an economic entity relates to a fundamental

accounting concept. For example, the notion of “Cost of Revenue” could be reported using the concept “Cost of Revenue”, or “Cost of Goods and Services Sold”, or “Cost of Goods Sold”, or “Cost of Services Sold”, etc. Basically, mapping rules enable information to be extracted from a report reliably.

A disclosure mechanics rule64 is a type of rule that describes the structural and mechanical representation of a disclosure against a specification or prototype of that disclosure. For example, every disclosure that has the property of concept arrangement pattern of “roll up” must always have a total. A disclosure mechanics rule would specify the concept that would be used to represent that total. A specific disclosure, such as “inventory components roll up” would be required to use a specific concept such as “Inventory, Net” to represent that total. A disclosure mechanics rule would specify that concept. Other concepts might be used as alternatives to some specific total concept to represent a disclosure. A disclosure mechanics rule would specify those alternatives. Every Level 4 Disclosure Detail representation has some complementary Level 3 Disclosure Text Block representation. A disclosure mechanics rule would specify that relation.

A type or class rule65 is a type of rule that expresses an allowed or a disallowed relation between two reporting scheme concepts for some reporting style. For example, the concept “Operating Expense (indirect operating expense)” would never be part of “Cost of Revenue (direct operating expense)”, a type or class rule would be used to explicitly disallow this relation. Alternatively, explicitly allowed relations are also expressed using type or class rules.

A reporting checklist rule66 is a type of rule that describes the reportability of a statutory or regulatory disclosure required by a reporting scheme. For example, some disclosures are always required. Other disclosures are required only if a specific line item is reported. Other disclosures could be used as alternatives for some other disclosure.

A report set67 is a set of one to many reports. For example, if you are comparing the reports of an economic entity for the past five years, the five reports that you use to perform that analysis are your report set.

A reporting entity aspect68 is a core aspect that distinguishes the economic entity which creates a report.

A calendar period aspect69 is a core aspect that distinguishes the calendar period of a reported fact. A stock70 is a type of calendar period aspect that is used to represent a fact as of a specific point in time. A synonym for stock is instant. A

65 Type or Class Rule, http://xbrlsite.azurewebsites.net/2019/Framework/Details/TypeClassRule.html
flow71 is a type of calendar period aspect that is used to represent a fact over a period of time. A synonym for stock is duration.

A concept aspect72 is a core aspect that is used to express the concept that relates to a fact. Synonyms for concept aspect include primary item and line item.

A fragment arrangement pattern73 is the relationship between fragments or the order or sequence of fragments within a report.

Prose74 is a type of fact value that is structure in nature (i.e. a table, an ordered list, an unordered list, paragraphs of text, or any combination of those structures).

Text75 is a type of fact value that is nonnumeric unstructured text (i.e. not prose).

A logical rule76 is a type of rule expresses logical relations between entities that make up a report.

An accounting rule77 is a type of logical rule that is used to express a logical assertion specifically related to accounting rules.

A mechanical rule78 is a type of logical rule that is used to express the relations between the report elements that make up a disclosure.

1.8. **Formal technical graphical view of model**

The following UML model depicts the model of a report. A financial report is a type of business report. This model is a common standard model that all business reports follow and is documented by OMG via the Standard Business Report Model (SBRM)79:

\footnotesize
\begin{itemize}
 \item Flow, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/Flow.html}
 \item Concept Aspect, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/ConceptAspect.html}
 \item Fragment Arrangement Pattern, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/FragmentArrangementPattern.html}
 \item Prose, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/Prose.html}
 \item Text, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/Text.html}
 \item Logical Rule, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/LogicalRule.html}
 \item Accounting Rule, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/AccountingRule.html}
 \item Mechanical Rule, \url{http://xbrlsite.azurewebsites.net/2019/Framework/Details/MechanicalRule.html}
 \item OMG, Standard Business Report Model, \url{https://omgwiki.org/SBRM/doku.php}
\end{itemize}
1.9. **Breaking Down the Pieces of an XBRL-based Digital Financial Report**

Do you realize that the average fact set of an XBRL-based digital financial report has 11 facts? This is skewed a little because a little over half of the fact sets are [Text Block]s. The information below is for a set of 6,023 XBRL-based financial reports submitted to the SEC by public companies:

- Total reports: 6,023
- Total facts reported: 8,532,275
- Average facts per report: 1,416
- Total networks in all reports: 462,786
- Average networks per report: 77
- Total fact sets in all reports: 754,430
- Average fact sets per report: 125
- Average fact sets per network: 1.6
- Average facts per network: 18
- Average facts per fact set: 11

Of the 754,430 fact sets there are:

Rather than simply working with a report, software can interact with the primitive pieces and the functional or complex pieces of that report with good affect.

1.10. Overview of key terminology of a digital financial report

The following terminology sets a foundation for discussing these principles. These terms explain the framework within which all work to create or review a digital financial report is performed. This terminology was first introduced by the Financial Report Semantics and Dynamics Theory which derived these terms. This terminology is intended to have very precise definitions in order to enable precise communication. These terms and the SBRM terms mean exactly the same thing. A few additional terms are added to achieve additional goals. The following is a brief summary of these important terms:

- **Report**: Report which communicates financial and nonfinancial information about an economic or accounting entity to users of that report. Financial reports contain facts, characteristics which describe those facts, parenthetical explanations of facts, relations between facts.

- **Fragment**: A fragment is a set of one or more fact sets. For example, a "balance sheet" is a fragment that is made up of two fact sets, an assets roll up and a liabilities and equity roll up.

- **Fact set**: A fact set (a.k.a. block or fact table) is a set of facts which go together (tend to be cohesive and share a certain common nature) for some specific purpose within a financial report. For example, an "income statement" is a fact set. The "Maturities of long-term debt" disclosure is a fact set.

- **Fact**: A fact is reported. A fact defines a single, observable, reportable piece of information contained within a financial report, or fact value, contextualized for unambiguous interpretation or analysis by one or more distinguishing characteristics. A fact value is one property of a fact; every fact has exactly one fact value. The set of characteristics of a fact is a property of the fact. For example, Cash and cash equivalents of 100,000 for the consolidated entity for the current balance sheet date of December 31, 2014 which is reported in US Dollars is a fact.

- **Characteristic**: A characteristic (a.k.a. aspect) describes a fact. A characteristic or distinguishing aspect provides information necessary to
describe a fact or distinguish one fact from another fact. A fact may have one or many distinguishing characteristics. For example, line item concept *Cash and cash equivalents* is a characteristic and the calendar period *December 31, 2014* are characteristics which describe a fact.

- **Parenthetical explanation**: Facts may have parenthetical explanations which provide additional descriptive information about the fact.
- **Rule**: A rule\(^{84}\) is used to guide, control, suggest, or influence behavior. Rules cause things to happen, prevent things from happening, or suggest that it might be a good idea if something did or did not happen. Rules help shape judgment, help make decisions, help evaluate, help shape behavior, and help reach conclusions.
- **Relation**: A relation\(^{85}\) is some interaction between the pieces which make up a financial report. Report components can be related to other report components. Reported facts can be related to other reported facts. Characteristics can be related to other characteristics. Business rules are a type of relation which describes computation type and logic-based relations. Classes or sets of concepts are relations.
- **Property**: A property is a trait, quality, feature, attribute, or peculiarity which is used to define its possessor and is therefore dependent on the possessor. A property belongs to something. For example, the color of a ball belongs to and is therefore dependent on (is a property of) the ball. Financial reports have a set of properties. Fragments have a set of properties. Fact sets have a set of properties. Facts have a set of properties. Characteristics have a set of properties. Parenthetical explanations have a set of properties. Relations have a set of properties.
- **Block**: A block\(^{86}\) is a part of a fact set that participates in the same concept arrangement pattern. For now, simply think about a block as a useful fragment of a financial report. A block and a fact set are the same thing.
- **Slot**: A slot is simply the idea of an allotted place where something can be logically and sensibly placed in a fragment of a financial report, or block, or fact set.
- **Disclosure**: A disclosure is simply a set of facts that is disclosed, a fact set.
- **Topic**: A topic is simply a set of disclosures that are grouped together for some specific reason.
- **Exemplar**: An exemplar is an example of a disclosure from some other existing financial report.
- **Template**: A template is a starting point or sample used to create a complete disclosure.

\(^{85}\) [A Taxonomy of Part-Whole Relations](http://csarchive.cogsci.rpi.edu/1987v11/i04/p0417p0444/MAIN.PDF)

• **Information model definition**: An information model definition (a.k.a. report definition) is the definition of the fragments, fact sets, aspects, aspect arrangement patterns, rules, disclosures, reporting style, that define the structure of a report.

• **Report set**: A report set is simply a set of one or many reports that are being used together to, for example, create an entity comparison or period comparison of reports.

• **Reporting scheme**: A reporting scheme\(^{87}\) is the financial reporting scheme used to create the information model definition.

• **Reporting style**: A reporting style\(^{88}\) describes the arrangement of high-level fundamental accounting concepts that are used to represent the balance sheet, income statement, statement of comprehensive income, and cash flow statement of a report.

1.11. Implementation model

Different software applications may choose to refer to things using different terms. Different XBRL taxonomies may refer to the same thing using different terms. For example, while the XBRL technical syntax uses the term “hypercube”, the US GAAP XBRL Taxonomy uses the term “[Table]” to refer to the same construct. Similarly, XBRL uses the term “dimension” and the US GAAP XBRL Taxonomy uses the term “[Axis]”.

1.11.1. Profiles

Differences in the implementation details of XBRL-based reporting are captured using the notion of a profile\(^{89}\). A profile, or application profile, is simply an approach to managing implementation details.

1.11.2. Report element categories

Further, different syntaxes use different terms. All this can get very confusing. Rather than trying to explain the reasoning and whims which cause these inconsistent terms; just learn these terms because you will see them within digital financial reports:

• **Network**: A Network is a technical artifact that really has no meaning by itself because those creating XBRL-based digital financial reports use networks in different ways. Sometimes networks are called groups.

• **Table**: A Table is the same thing that XBRL calls a hypercube. A Table or hypercube simply groups some set of Axes, Members, Line Items, Abstracts, and Concepts together. Again, because Table’s are used inconsistently, they really have no meaning by themselves.

\(^{87}\) *High level comparison of reporting schemes,*

\(^{88}\) Charles Hoffman, CPA and Rene van Egmond, *Understanding Fundamental Accounting Concepts and Reporting Styles*,

http://xbrlsite.azurewebsites.net/2017/IntelligentDigitalFinancialReporting/Part02_Chapter05.6_UnderstandingFundamentalAccountingConceptRelationsAndReportingStyles.pdf

\(^{89}\) *XBRL-based Digital Financial Reporting Profiles and General Business Reporting Profile,*

INTELLIGENT DIGITAL FINANCIAL REPORTING – PART 2: CONCEPTUAL MODEL OF A DIGITAL FINANCIAL REPORT – INTRODUCTION TO CONCEPTUAL MODEL OF A DIGITAL FINANCIAL REPORT – CHARLES HOFFMAN, CPA AND RENE VAN EGMOND

- **Axis**: An Axis is one approach to representing a Characteristic. Entity and period core aspects\(^90\) are also in essence axes. An Axis is the same thing that XBRL calls a dimension or the SBRM model calls an Aspect.

- **Member**: A Member is a value of a Characteristic.

- **Line Items**: A Line Items is a type of dimension or Axis. Line Items is the same thing XBRL calls primary items.

- **Abstract**: An Abstract is simply used to organize, they provide no real meaning.

- **Concept**: A Concept is a type of Member. A Concept is special in that it can be used to represent a Fact Value. Therefore, Concepts have data types.

1.11.3. **Relations between report element categories**

The implementation model constructs can be related in very specific ways. The following table shows the allowed relationships between the different categories of report elements:

<table>
<thead>
<tr>
<th>Parent</th>
<th>Network</th>
<th>Table</th>
<th>Axis</th>
<th>Member</th>
<th>Line Items</th>
<th>Abstract</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Illegal XBRL</td>
</tr>
<tr>
<td>Table</td>
<td>OK</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>OK</td>
<td>Disallowed</td>
</tr>
<tr>
<td>Axis</td>
<td>Disallowed</td>
<td>OK</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
</tr>
<tr>
<td>Member</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>OK</td>
<td>OK</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
</tr>
<tr>
<td>Line Items</td>
<td>Disallowed</td>
<td>OK</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
</tr>
<tr>
<td>Abstract</td>
<td>OK</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>Concept</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>Disallowed</td>
<td>OK</td>
<td>OK</td>
<td>Not advised</td>
</tr>
</tbody>
</table>

1.11.4. **Constructing fact sets using XBRL**

If you want to understand the details of how fact sets are implemented in the XBRL technical syntax, you can read this section. If not, please skip this section. This section assumes that you have read the basic *XBRL Technical Primer*\(^91\).

In XBRL, an information model description is created by creating Networks, putting Tables (hypercubes) in Networks, and then putting other report elements within Tables.

If you do not explicitly define a Table within a Network you basically have an implied Table. Facts are never free-floating in space, they always exist within a Network; and at least one Table always exists whether that Table is explicitly defined or implied.

And so, Networks and Tables (explicitly defined or implied) are used to represent the information model description of a report. Sometimes you MUST separate things using Networks to avoid conflicts; other times you get to choose whether to separate things using Networks. Tables work the same way; sometimes you MUST use them to separate fact sets and other times you get to choose.

\(^91\) Charles Hoffman, CPA and Rene van Egmond, *XBRL Technical Primer*, http://xbrlsite.azurewebsites.net/2017/IntelligentDigitalFinancialReporting/Part00_Chapter01.2_XBRLPrimer.pdf
A representation of information can have four possible states or features:

1. An information representation can be *logically represented* and *easy to comprehend*.
2. An information representation can be *logically represented* and *hard to comprehend*.
3. An information representation can be *illogically represented* and *easy to comprehend (but illogical)*.
4. An information representation can be *illogically represented* and *hard to comprehend (but illogical)*.

States #3 and #4 are incorrect by definition. Information that is defined illogically is simply wrong. State #2 is not incorrect, but neither is it a best practice. State #1 is the only best practice, information that is logically represented and as easy to read as possible.

A best practice is a method or technique that has been generally accepted as superior to any other known alternatives because it produces results that are superior to those achieved by other means or because it has become a standard way of doing things. This chapter focuses on best practices.

In XBRL whether you use an explicitly defined Table or an implied Table, the representation of information follows exactly the same pattern as is shown below.

The following rules apply to the representation if the information model definition of a report and you have no power to change those rules what-so-ever:

1. XBRL technical syntax rules determine the relation between concepts represented within XBRL calculation relations.
2. XBRL technical syntax rules determine the relation between all report elements represented within XBRL definition relations.
3. XBRL technical syntax rules determine the relations between reporting entity information (a core aspect); there is no mechanism to represent such relations, so the relation is always a flat list of relations.
4. XBRL technical syntax rules determine the relations between period information (a core aspect); there is no mechanism to represent such relations, so the relations is always a flat list of relations.
5. Model structure rules (see section Relations between report element categories above) define the allowed relations between the categories of report elements in the XBRL presentation relations. XBRL does not define these relations rules.

6. If all of the above are true; then the only relations that you can determine when representing the information model definition of a report are:
 a. The relations between the Members of an Axis (i.e. Member Arrangement Patterns)
 b. The relations between the Concepts within a set of [Line Items] (i.e. Concept Arrangement Pattern)

Because rules #1 through #4 are enforced by the XBRL technical syntax all those rules are true by definition. Run #5 is a choice to some degree. Software users cannot represent illogical relations; but they can represent things in dumb ways. These dumb approaches are certainly not best practices and they tend to be inconsistent with the way the vast majority of XBRL-based financial reports are created.

The point here is the following: representing the information model definition of a report comes down to:

1. The order of the Concepts within a set of Line Items.
2. The order of the Members within an Axis.
3. The order of the report Fragments.

And so, understanding concept arrangement patterns, member arrangement patterns, and the flow of report fragments is necessary to create properly represented XBR-based reports.

1.11.5. Relations between concepts or concept arrangement patterns

Within a set of [Line Items], concepts are related to other concepts in specific ways. Concepts can be related to one another numerically. Concepts can be related logically. Concepts can be related mechanically. The following is a summary of concept arrangement patterns:

- **Roll up**: Fact A + Fact B + Fact C = Fact D (a total)
- **Roll forward**: Beginning balance + changes = Ending balance
- **Adjustment**: Originally stated balance + adjustments = restated balance
- **Variance**: Actual amount – Budgeted amount = variance
- **Complex computation**: Net income / Weighted average shares = earnings per share
- **Set or Hierarchy**: Facts are related in some way, but not numerically. (Note that the term hierarchy is an older term that is going to be phased out; the term set is preferred.)

92 Charles Hoffman, CPA and Rene van Egmond, *Understanding Concept Arrangement Patterns, Member Arrangement Patterns, and Report Fragment Arrangement Patterns*, http://xbrlsite.azurewebsites.net/2017/IntelligentDigitalFinancialReporting/Part02_Chapter05.7_UnderstandingConceptArrangementPatternsMemberArrangementPatterns.pdf
1.11.6. **Relations between members or member arrangement patterns**

Within an [Axis], the [Member]s of that [Axis] are arranged in specific ways which is called the Member Arrangement Pattern. Member Arrangement Patterns fall into two broad groups:

- **Member Aggregation**: something composed exactly of their parts of some whole and nothing else; the sum of the parts is equal to the whole. Essentially, a Member Aggregation relation is a “whole-part” relation and is equivalent to a [Roll Up] Concept Arrangement Pattern.

- **Member Non-aggregation**: descriptive and differentiates one type or class of thing from some different type or class of thing; but the things do not add up to a whole. Essentially, a Member non-aggregation relation is an “is-a” type relation and is equivalent to a [Set] Concept Arrangement Pattern.

Note that XBRL does a poor job of providing information about the relationships between members that are other than a flat set of members. Complex hierarchies of members should be avoided.

Subsequent sections provide a more detailed explanation of member arrangement patterns and examples of such patterns.

1.11.7. **Relations between report fragments or fragment arrangement patterns**

A financial report has a flow, or an ordering or sequencing of the report fragments which make up the financial report. Financial report creators have flexibility as to this flow, for example an income statement could come before or after a balance sheet. These relations are called Fragment Arrangement Patterns.

- **Fragment**: Any specific part of a digital financial report.

- **Component**: Defined as a Network plus a Table

- **Block**: As stated previously, a block or fact set is a set of [Line Items] that have the same Concept Arrangement Pattern and same Member Arrangement Pattern.

- **Information model**: The Member Arrangement Pattern and Concept Arrangement Pattern of a Block.

1.11.8. **Mechanical, structural, mathematical, consistency, type/class and logical relations**

In addition to the relations that have been discussed thus far, other types of mechanical, structural, mathematical, consistency, type/class, and other logical relations can exist. For example:

- A specified report element could be required to be reported.

- A specified fact set could be required to be reported.
Some set of facts must always be consistent and not contradict or be inconsistent with each other no matter what fact set the facts are reported within.

A fact must always be a part of some other fact which is a whole and must never be reported as a part of that whole.

A fact set representing some disclosure must always be reported as a roll forward (i.e. a roll up is not the proper information representation).

All of these sorts of relationships can be described in machine readable form and then leveraged by a software creation in the process of creating or using a digital financial report.

1.12. Understanding the utility of a block and a slot

Think of a financial report not as one big thing, but rather as thousands of much smaller pieces\(^93\). Reports can be broken down into pieces or fragments. Fragments can be further broken down into fact sets. A fact set is simply a set of reported facts that tend to be cohesive and share a certain common nature and therefore go together.

A **component** maps to an XBRL network plus one XBRL hypercube or [Table] (as called by the US GAAP XBRL Taxonomy). If a network contains two hypercubes, then the there are two components.

The term component was just made up in order to describe and discuss the notion of some specific Table within some specific Network. Some other term would work as well. By giving each different type of relation a name, the pieces can be referred to. The different types of pieces are related to other types of pieces in clear, consistent, logically coherent, and unambiguous ways\(^94\).

Another term that I made up is the term “Block”. As it turns out, the term Block and the term Fact Set are equivalent.

Imagine the lowest common fragment level that is used to work with some set of information reported in a digital financial report. I call that structure a “block”\(^95\).

A **block** or fact set is a part of a fragment or component that participates in the same **concept arrangement pattern**\(^96\). By definition, all the concepts participate in the same Member Arrangement Pattern of a component (Network + Table). A roll

up, roll forward, adjustment, and set (hierarchy) are all types of concept arrangement patterns. Every XBRL-based public company financial report is essentially a set of blocks. I estimate that there are about 754,430 blocks in the set of public company reports that I analyzed. 16% are roll ups, 5% are roll forwards, 24% are sets (hierarchies), and 54% are text blocks\(^97\). I know this because I measured the reports that I analyzed to figure out that blocks exist.

An **information model** is the combined concept arrangement pattern and member arrangement pattern of a block.

Blocks have something called a “slot”\(^98\). A **slot** is simply the idea of an allotted place where something can be logically and sensibly placed in a block. For example, a roll up has exactly one total and so two totals could never logically be added to a roll up.

Blocks and slots are in no way random. Blocks are used to represent information that is disclosed in a financial report in consistent ways, patterns. Balance sheets and the other primary financial statements are made up of blocks, long-term debt maturities disclosure and other disclosures are made up of blocks. Every fragment of a financial report is a set of one or many blocks. As I pointed out, blocks have very specific concept arrangement patterns: roll up, roll forward, text block, adjustment, hierarchy (set). Blocks are related to other blocks in very specific ways.

1.12.1. Basic block

Here is an example of a block that represents a roll up (the concept arrangement pattern) which has no [Axis] and therefore the most basic member arrangement pattern:

<table>
<thead>
<tr>
<th>Property, Plant and Equipment, by Component [Line Items]</th>
<th>Period [Axis]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2010-12-31</td>
</tr>
<tr>
<td></td>
<td>2009-12-31</td>
</tr>
<tr>
<td>Property, Plant and Equipment, by Component [Roll Up]</td>
<td></td>
</tr>
<tr>
<td>Land</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>1,000,000</td>
</tr>
<tr>
<td>Machinery and equipment, gross</td>
<td>2,000,000</td>
</tr>
<tr>
<td></td>
<td>2,000,000</td>
</tr>
<tr>
<td>Furniture and fixtures, gross</td>
<td>6,000,000</td>
</tr>
<tr>
<td></td>
<td>5,000,000</td>
</tr>
<tr>
<td>Accumulated depreciation</td>
<td>(1,000,000)</td>
</tr>
<tr>
<td></td>
<td>(1,000,000)</td>
</tr>
<tr>
<td>Property, plant and equipment, net</td>
<td>8,000,000</td>
</tr>
<tr>
<td></td>
<td>8,000,000</td>
</tr>
</tbody>
</table>

You cannot add a second total to a roll up as a roll up has only one total. It would not make logical sense to add a second total to a roll up. Therefore, adding second totals to a roll up should be disallowed within a software application.

It does make sense to add another concept to the set of line items which aggregate to the total. It also does make sense to add an entirely new period characteristic.

\(^97\) I have a document that summarizes this information.

slot is simply a logical location where something can be added to a block. Exactly where slots exist in a block depends on the *concept arrangement pattern* and *member arrangement pattern* of the block. Every block in every report fragment or component works in exactly this same way.

If you are a professional accountant you innately understand how information is related in a set of information such as what is represented in the example shown above. And there are many, many other such report fragments within a financial report. But professional accountants don’t call these pieces of information “blocks” because they never needed to explain the mechanics and dynamics that are at work to a computer before. But to represent a financial report digitally and to interact with software applications that provide these digital representations of a financial report describing these mechanics and dynamics is necessary.

1.12.2. Slightly more complex block

Below is a slightly more complex block. The block below is made up of two roll ups and has a whole-part relation which semantically is really similar to a roll up. Professional accountants understand that the disclosure below both “foots” and “cross casts”. However, the software vendor creating this application does not provide the single underscores and double underscores that explicitly show the mathematical relations. I have added green arrows to show the mathematical relations and green check marks to show that all the information does in fact foot and cross cast as expected:

![Diagram](image)

The fragment above has two blocks. Each block has a roll up concept arrangement pattern. Each block shares the same member arrangement pattern which happens to be a whole-part relation. Logically, the whole-part member arrangement pattern relation is identical to the roll up concept arrangement pattern. It still makes sense to add concepts to the roll up. It still makes sense to add a new period. It also makes sense to add an additional [Member] to the [Axis]. (NOTE that this software
Imagine articulating all the things that are going on unconsciously in the mind of a professional accountant to a machine such as a computer in a manner that is explicitly understandable to the computer. That is why we are providing explicit names such as “block” and “slot” and “concept arrangement pattern” and “member arrangement pattern”.

1.13. Understanding the notion of a parenthetical explanation

A parenthetical explanation is a comment that can be attached to any fact. A parenthetical explanation provides additional descriptive information for a fact. Below you see the line item “Net Income (Loss)” which has two parenthetical explanations.

1.14. Understand specific error risks and automated versus manual risk mitigation verification tasks

While the previous section discusses general risks that things are incorrect, incomplete, inaccurate, or don’t fit together properly; this section points out specifics. Below is a summary of specific things that can go wrong, whether the fact that it is wrong can be detected using automated processes or whether manual processes must be used, and measurements from 2015, 2014, 2013, and 2012 where measurements are available: (automated tests only)
<table>
<thead>
<tr>
<th></th>
<th>Introduction to Conceptual Model of a Digital Financial Report – Charles Hoffman, CPA and Rene van Egmond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XHTML syntax: XBRL technical syntax consistent with XBRL technical specification requirements</td>
</tr>
<tr>
<td>2</td>
<td>EFM: Consistent with requirements of EDGAR Filer automated and manual (EFM) syntax/semantics rules</td>
</tr>
<tr>
<td>3</td>
<td>Model structure: Consistent and unambiguous report level representation or model structure</td>
</tr>
<tr>
<td>4</td>
<td>Root economic entity discovery: Root entity of focus (economic entity, accounting entity) successfully and unambiguously detectable</td>
</tr>
<tr>
<td>5</td>
<td>Key dates: Current balance sheet date (document period end date) and income statement period (period context of document period end date) successfully and unambiguously detected</td>
</tr>
<tr>
<td>6</td>
<td>FAC relations: Fundamental accounting concept skeleton successfully and unambiguously detected and relations between concepts consistent</td>
</tr>
<tr>
<td>7</td>
<td>Statement roll ups: Primary financial statement roll up computations (balance sheet, income statement, statement of comprehensive income, cash flow statement) detected, intact, and foot</td>
</tr>
<tr>
<td>8</td>
<td>Statement discovery: Primary financial statements successfully discovered</td>
</tr>
<tr>
<td>9</td>
<td>Statement computations: Primary financial statements foot and roll forward (cash flow statement, statement of changes in equity) appropriately</td>
</tr>
<tr>
<td>10</td>
<td>Level 1 notes: Level 1 footnote disclosures appropriate</td>
</tr>
<tr>
<td>11</td>
<td>Industry specific: Industry specific accounting concepts and relations valid</td>
</tr>
<tr>
<td>12</td>
<td>Level 2 policies: Level 2 policy text block disclosures appropriate</td>
</tr>
<tr>
<td>13</td>
<td>Level 3 Text Block disclosures: Each Level 3 [Text Block] and related Level 4 detail disclosure match appropriately</td>
</tr>
<tr>
<td>14</td>
<td>Level 4 detailed disclosures: Each Level 4 detail disclosure valid including representation structure, mathematical computations, intersections with other components, etc.</td>
</tr>
<tr>
<td>15</td>
<td>Required disclosures: Required disclosures discovered</td>
</tr>
<tr>
<td>16</td>
<td>Consistency with prior period: Reported prior period information consistent with prior report current period information where appropriate</td>
</tr>
<tr>
<td>17</td>
<td>Consistency of disclosures: Disclosure rules have been met and make sense</td>
</tr>
<tr>
<td>18</td>
<td>Concept selection appropriateness: Report element selection is justifiable, defensible, and otherwise appropriate</td>
</tr>
<tr>
<td>19</td>
<td>Reported facts full/false inclusion: Reported facts appropriate</td>
</tr>
<tr>
<td>20</td>
<td>Consistency of facts with peers: Variance analysis of reported facts as compared to peer or peer group appropriately explainable</td>
</tr>
<tr>
<td>21</td>
<td>Concept selection consistent with peers: Report element selection is consistent with peers or peer groups as appropriate</td>
</tr>
</tbody>
</table>
This list is not fully inclusive, but there is nothing on the list that can be excluded from a process of verifying that a digital financial report is correct.

1.15. Example verification dashboard framework

The document *Blueprint for Creating Zero-Defect XBRL-based Digital Financial Reports*\(^9\) provides additional information related to the validation described above and describes the notion of a defect-free XBRL-based digital financial report.

The following is a summary of example dashboards which can be helpful in understanding if an XBRL-based digital financial report is created appropriately.

1.15.1. Verify report

The following is a summary dashboard to verify one report:

<table>
<thead>
<tr>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Here is another dashboard for providing summary information about the consistency of an XBRL-based report to business rules used to verify the quality of that report:

The dashboard summarizes detailed information so professional accountants can quickly determine whether errors exist in XBRL-based digital financial reports where

\(^9\) *Blueprint for Creating Zero-Defect XBRL-based Digital Financial Reports*,
automated processes can be used. Below is an example of one section of the detailed report that feeds the summary dashboard:

1.15.2. Compare across reports

The following is a summary dashboard to verify across reports to determine if all reports are created correctly:

<table>
<thead>
<tr>
<th>Income Statement Line Items</th>
<th>Period [Year]</th>
<th>Fact</th>
<th>Original</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2015-01-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015-12-31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Income (Loss) [Roll Up]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income (Loss) from Continuing Operations After Tax [Roll Up]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income (Loss) from Continuing Operations Before Tax [Roll Up]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest Income (Expense), After Provision for Losses [Roll Up]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest Income (Expense), Net [Roll Up]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal and Dividend Income, Operating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest Expense, Operating</td>
<td>4,048,000</td>
<td>fac:InterestExpenseOperating[us-gasp:InterestExpenseOperating[us-gasp:InterestExpense[4,048,000]]]</td>
<td></td>
</tr>
<tr>
<td>Interest Income (Expense), Operating, Net</td>
<td>36,309,000</td>
<td>fac:InterestIncomeExpenseOperatingNet[us-gasp:InterestIncomeExpenseOperatingNet[36,309,000]]</td>
<td></td>
</tr>
<tr>
<td>Provision for Loan, Lease, and Other Losses</td>
<td>11,000</td>
<td>ProvisionForLoanLeaseAndOtherLosses[11,000]</td>
<td></td>
</tr>
<tr>
<td>Interest Income (Expense) After Provision for Losses</td>
<td>36,309,000</td>
<td>fac:InterestIncomeExpenseAfterProvisionForLosses[interestIncomeExpenseAfterProvisionForLosses[36,309,000]]</td>
<td></td>
</tr>
<tr>
<td>Noninterest Income</td>
<td>7,272,000</td>
<td>NonInterestIncome[7,272,000]</td>
<td></td>
</tr>
<tr>
<td>Noninterest Expense</td>
<td>29,775,000</td>
<td>NonInterestExpense[29,775,000]</td>
<td></td>
</tr>
<tr>
<td>Income (Loss) from Continuing Operations Before Tax</td>
<td>12,726,000</td>
<td>fac:IncomeLossFromContinuingOperationsBeforeTax[us-gasp:IncomeLossFromContinuingOperationsBeforeTax[12,726,000]]</td>
<td></td>
</tr>
<tr>
<td>Income Tax Expense (Benefit)</td>
<td>4,082,000</td>
<td>fac:IncomeTaxExpenseBenefit[us-gasp:IncomeTaxExpenseBenefit[4,082,000]]</td>
<td></td>
</tr>
<tr>
<td>Income (Loss) from Continuing Operations After Tax</td>
<td>6,644,000</td>
<td>fac:IncomeLossFromContinuingOperationsAfterTax[6,644,000]</td>
<td></td>
</tr>
<tr>
<td>Income (Loss) from Discontinued Operations, Net of Tax</td>
<td>0</td>
<td>fac:IncomeLossFromDiscontinuedOperationsNetOfTax[0]</td>
<td></td>
</tr>
<tr>
<td>Extraordinary Items of Income (Expense), Net of Tax</td>
<td>0</td>
<td>fac:ExtraordinaryItemsOfIncomeExpenseNetOfTax[0]</td>
<td></td>
</tr>
<tr>
<td>Net Income (Loss)</td>
<td>6,644,000</td>
<td>fac:NetIncomeLoss[6,644,000]</td>
<td></td>
</tr>
</tbody>
</table>
1.15.3. Compare specific detail across periods

The following is an example of comparing details across periods. Here you see high-level items related to the statement of comprehensive income. Each financial report section could have this type of comparison.

<table>
<thead>
<tr>
<th>Comprehension Income (Loss), Deductible (Tax-Equivalent)</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
</tr>
</thead>
</table>
| 1.15.4. Compare specific detail across peer entities

The following is an example of comparing details across peer entities. Here you see high-level items related to the statement of comprehensive income. Each financial report section could have this type of comparison.

The document Method of Implementing a Standard Digital Financial Report Using the XBRL Syntax\(^\text{100}\) describes a specific method for creating a high-quality, high-resolution financial report and its related taxonomies using the XBRL technical syntax. That method demonstrated via the creation of a prototype XBRL taxonomy and report for the International Public Sector Accounting Standards (IPSAS)\(^\text{101}\).

1.17. Inline XBRL

Inline XBRL\(^\text{102}\), or iXBRL, is an additional model layer on top of “raw XBRL”, or XBRL that does not take advantage of the Inline XBRL layer. Inline XBRL is a method of representing facts and their contexts within an HTML document (actually XHTML). The model of the report and the information conveyed by the report is exactly the same whether Inline XBRL is used or raw XBRL is used to represent the facts and contextual information.

1.18. Universe of Discourse

A logical model of a financial report can be used to shield business users from the technical complexity of an XBRL-based report and the report’s technical model.

A universe of discourse is the set of all things under consideration during a discussion, examination, or study. A universe of discourse is the set of all objects or entities that is defined by a model. XBRL-based digital financial reporting is NOT conceptually promiscuous; you simply cannot add new pieces to the model. The model is the shape of the information (the report itself) not the specific information (what goes into the report) that goes into that shape.

Axioms and theorems assert knowledge. Constraints are restrictions on existing knowledge. Constraints can be used to detect incomplete information. Constraints can be used to check knowledge for inconsistencies and contradictions. Axioms, theorems, constraints, and other sorts of rules all follow the rules of logic. The rules of logic are the common denominator.

Business users interact with the model using the semantic level of these “Conceptual Legos” that expose logical pieces that are understandable by the user of the system. The system is not a “black box”, rather the system is transparent do that the business professional using the system understands what the system is doing.

Digital financial reporting requires that every user of the system share the same universe of discourse, the same fundamental model, and the same logical rules. The goal is that every interpretation of the model is consistent with the intended interpretation of the model. The model is formal, the model is definable, and the model has a finite set of shapes.

1.19. Importance of Logical Theory Describing a Business Report

The *Logical Theory Describing a Business Report* and the *Financial Report Semantics and Dynamics Theory* describe the same business report model. A financial report is a specialization of the more general business report.

Absence of some common standard metamodel usable by individual business domain or regulator models (structure, constraints definitions, etc.):

- forces each implementation of standard business reporting for regulatory reporting or internal reporting within an organization to specify their own individual business report model to the best of their ability and such individual models tend to be lacking in quality and inconsistencies with other specified business report models
- makes retrieval of specific sections and fact data points of a business report unreliable
- makes it impossible to assert compliance of the report with statutory, regulatory and internal reporting constraints on the reported information
- makes disambiguation of facts from multiple sources all but impossible due to the absence of such a metamodel that qualifies provenance.

Absence of the means to connect domain taxonomies and ontologies to the standard business report process:

- impedes the definition of the domain specific semantics needed to properly assert reporting compliance constraints
- prevents the reuse of information definitions across multiple business reports within a single regulatory context
- prevents the creation of an information repository that supports cross-domain analysis
Think about implementing something like Deloitte’s vision of The Finance Factory\(^{103}\) without common standards including a common standard business report model. Think about implementing accounting process automation or continuous accounting or other such endeavors.

Standards provide leverage\(^{104}\). If it is unclear to you why standards matter, consider reading *Computer Empathy*\(^{105}\) to understand what it actually takes to make such projects work effectively.

1.20. Standard Business Report Model (SBRM)

The Object Management Group (OMG) is taking XBRL-based business reports to a new level, leveraging what has been learned from creating XBRL-based financial reports over the past 10 years. The Standard Business Report Model (SBRM)\(^{106}\) is described as follows:

“SBRM formally documents a logical conceptualization of a business report in both human-readable and machine-readable models.”

SBRM goes on to explain that through the use of standard models, business experts can define the structure and content of their reports and extensions using high-level logical business report objects, possibly presented in the form of semantic spreadsheets and pivot tables rather than with lower level technical syntax.

While XBRL has mainly been employed for financial reporting, leveraging the nature of financial accounting rules\(^{107}\); digital business reporting will benefit from the capabilities pioneered by XBRL-based financial reporting. Further, business reporting will not be limited to only one syntax but rather the arbitrary preferred syntax of can be used and systems can still be consistent with one conceptual model of a business report.

Financial reporting will likewise benefit from SBRM because SBRM helps business professionals and technical professionals constructing systems where flexible reporting is a requirement to effectively control variability and still have high-quality information exchanges.
