Accounting in the Fourth Industrial Revolution

Machine readable, structured accounting data constrained by rules providing high quality

By

Charles Hoffman, CPA (Charles.Hoffman@me.com)

Andrew Noble, PNA, BBus (Andrew@nobleaccounting.com.au)

Last Revised – November 8, 2019 (DRAFT)

"Where there is no order there is confusion." *Luca Pacioli*¹

Executive summary:

- The world is increasingly going digital.
- Financial accounting, reporting, auditing, and analysis is not immune to these changes and will be impacted.
- What will become of human professional accountants in a world where computers play an increasing role in accounting, reporting, auditing, and analysis?
- Accountants who survive and thrive will have an intimate understanding of the limitations of their machine assistants. They will know how to use these new tools with good affect.
- "Digital" opens up new possibilities for how double-entry accounting information systems can function.
- Rather than the more "open" type systems that exist today which pushes work to the end of the month and the grueling, mindless, mechanical process of fixing errors; a new more "closed" or "constrained" approach which leverages accounting knowledge in machine readable form can be implemented.
- Combining artificial intelligence, structured machine-readable information, high-quality curated metadata; accounting, reporting, auditing, and analysis processes can be supercharged. This is analogous to converting crude oil to high-octane racing fuel.
- Leveraging double-entry accounting and the accounting equation the general journal can become a vital and important tool.

¹ Luca Pacioli, *Ancient Double-entry Bookkeeping*, page 33, https://books.google.com/books?id=uQ9AAAAAYAAJ&pg=PA33
Copyright (full and complete release of copyright)

All content of this document is placed in the public domain. I hereby waive all claim of copyright in this work. This work may be used, altered or unaltered, in any manner by anyone without attribution or notice to me. To be clear, I am granting full permission to use any content in this work in any way you like. I fully and completely release all my rights to any copyright on this content. If you feel like distributing a copy of this work, you may do so without attribution or payment of any kind. All that said, attribution is appreciated should one feel so compelled. The copyrights of other works referenced by this document are established by the referenced work.
Today, when entries are posted to a general journal the accounts that can be used to post that transaction tend to be unconstrained and specific information related to the change that the transaction will cause tends to be totally absent. Yes, it is true that the accounts used to post general journal entries must exist within the chart of accounts. And yes, there can be additional constraints applied to what information can appear within a specific general journal entry to keep the quality of general journal entries in check. But the truth of the matter is that it is rather easy to post transactions within a general journal incorrectly.

As a result, the month end closing process tends to involve extensive and expensive heroic efforts to rid the month’s transactions of errors. Commonly, the accounting principle of materiality is used to blow off the results of a poor process for getting the financial statements out. This is true not only for external financial reports but just as true for internal financial reports.

What if there were a better way? What if the principles and techniques of Lean Six Sigma\(^2\) could be used to assist in the monitoring and controlling of accounting processes? What if automated machine-based processes which are becoming available as a result of the Fourth Industrial Revolution\(^3\) could replace some of the grueling, mindless, mundane and often gruesome and even barbaric processes for keeping the quality of financial reports high?

Professional accountants have better ways to add value to their organization than toiling in the salt mines of the month end close.

This document explores techniques and methods which are coming to light per the past ten years of experimenting with the features offered by the global standard Extensible Business Reporting Language (XBRL)\(^4\). These observations come from Australia’s Standard Business Reporting (SBR) initiative\(^5\) and XBRL-based financial reporting of public companies to the U.S. Securities and Exchange Commission\(^6\). We combine the financial reporting perspective and the accounting transaction perspectives into one integrated system for improving accounting, reporting, auditing, and analysis processes.

Transitioning to Digital

What will become of human professional accountants in a world where computers play an increasing role in accounting, reporting, auditing, and analysis? As in many other spheres of knowledge touched by digital; accountants who survive and thrive will have an intimate understanding of the limitations of their machine assistants. These accountants will be part accountant bringing their broad domain knowledge, have good understanding of the real capabilities of their machine-based collaborators, and adept at asking valuable “what if” type questions which are beyond the capabilities of machines. These accountants will have the “know how” to employ digital tools and know what to do with those tools and wield these tools with good affect.

Digital is already on the way. Electronic invoicing is a good example. The Australian government points out:

Each year, Australian businesses process around 1.2 billion invoices.

Paper and email-based invoicing is manually intensive and prone to human error resulting in increased processing costs and payment times for businesses. Electronic invoicing (or e-Invoicing) is the direct, electronic exchange of invoices between suppliers’ and buyers’ financial systems. e-Invoicing is a clear opportunity to streamline invoice transactions, saving businesses time and money.

e-Invoicing could result in benefits to the Australian economy of $28 billion over ten years, according to estimates by Deloitte Access Economics.

Smart contract is another excellent example which is defined:

A smart contract is a computer protocol intended to digitally facilitate, verify, or enforce the negotiation or performance of a contract. Smart contracts allow the performance of credible transactions without third parties. These transactions are trackable and irreversible.

The Fourth Industrial Revolution is a real thing. As well as providing for precision accounting, this emerging digital transactional reality will facilitate the natural progression of economic decision making into the domain of machines.

Human overseers will cede control of more and more of the financial fabric to algorithms. Today we see this emergent behavior in the way enterprises use algorithms to price products and services12 and designing marketing plans13. Others are contemplating the future of assurance; a world of continuous auditing and continuous reporting14.

Thinking that accounting, reporting, auditing, and analysis will be immune to the changes caused by technologies such as artificial intelligence15, structured information formats such as XBRL and RDF16, and digital distributed ledgers17 is at best wishful thinking and at worst naïve.

In the near future, say perhaps five or maybe ten years, we doubt many transactions will be initiated without some underlying digital contract. Significant accounting efficiencies cannot be achieved without adapting to this new digital reality.

Adaptation will require a change in accounting software architectures and the behavior of accountants. Accounting software will be designed to “read and understand” smart contracts; filing transactions with lean six-sigma18 precision and maintaining a constant link to the digital contract. Where today, every enterprise has their own accounting system, tomorrow every enterprise will have the digital encryption keys to their own data but rely on a network of digital services. An accounting digital service network will be comprised of “frames of reference” leveraged mainly by other machines. Today we call these “frames of reference” taxonomies and ontologies. Tomorrow, accounting will be a natural extension of the semantic web19. Governments and trading consortiums will publish their particular “frames of reference” or data resources that describe their product and or service domain in great detail.

These “frames of reference” are essentially curated metadata20. Data is like crude oil. Creating metadata to help machines better understand the data is like refining the crude oil into

\begin{thebibliography}{9}
\bibitem{12} Wikipedia, \textit{Algorithmic Pricing}, \url{https://en.wikipedia.org/wiki/Algorithmic_pricing}
\bibitem{13} Wikipedia, \textit{Attribution (Marketing)}, \url{https://en.wikipedia.org/wiki/Attribution_(marketing)}
\bibitem{14} DCARPE Alliance, \url{https://dcarpe.org/}
\bibitem{15} Charles Hoffman, CPA, \textit{Artificial Intelligence and Knowledge Engineering in a Nutshell}, \url{http://xbrlsite.azurewebsites.net/2019/Library/KnowledgeEngineeringInNutShell.pdf}
\bibitem{16} Charles Hoffman, CPA, \textit{Everything you Need to Know to have an Intelligent Conversation about Digital Financial Reporting}, \url{http://xbrl.squarespace.com/journal/2019/5/29/everything-you-need-to-know-to-have-an-intelligent-conversat.html}
\bibitem{17} Charles Hoffman, CPA and Rene van Egmond, \textit{Comprehensive Introduction to Digital Distributed Ledgers}, \url{http://xbrlsite.azurewebsites.net/2017/IntelligentDigitalFinancialReporting/Part01_Chapter02.71_DistributedLedgers.pdf}
\bibitem{18} Charles Hoffman, CPA, \textit{Comprehensive Introduction to Lean Six Sigma}, \url{http://xbrlsite.azurewebsites.net/2017/IntelligentDigitalFinancialReporting/Part01_Chapter02.72_LeanSixSigma.pdf}
\bibitem{20} Charles Hoffman, CPA, \textit{Curated Machine-Readable Information (also Human-Readable) is the Future}, \url{http://xbrl.squarespace.com/journal/2019/6/14/curated-machine-readable-information-also-human-readable-is.html}
\end{thebibliography}
gasoline. When done right, some of the gasoline can be further refined into high-performance racing fuel21. That high-quality “racing fuel-type metadata” can supercharge an artificial intelligence software application performing work reliably. High quality curated metadata will supercharge accounting, reporting, auditing, and analysis applications. That high-quality curated metadata will be pure gold in a digital environment.

Process Overview

The following graphic22 provides an overview of the processes and tasks that are involved in the creation of internal and external financial reports:

Fundamentally, accounting information systems have two primary parts: (1) the part that flows through a double-entry accounting system, and (2) everything else.

This document focuses on the part that flows through the double-entry accounting system. It is not that what does not flow through this part of the accounting information systems is unimportant. It is simply not our focus in this document. If you want additional information helpful related to information that does not flow through the double-entry accounting system, see the document *Introduction to the Fact Ledger*.

Logic of Financial Statements

A quick overview of the logic of financial statements will help the reader to put the pieces together effectively.

The basic high-level model of a financial report follows double-entry accounting and is described by the accounting equation which is a logical statement:

\[
\text{Assets} = \text{Liabilities} + \text{Equity}
\]

Standards setters create financial reporting schemes which provide further details which expand on the accounting equation. By definition a standards setter cannot violate the accounting equation. The financial reporting scheme essentially defines a core set of *classes* of elements used by that financial reporting scheme which reconciles to the accounting equation. The elements of financial statements are the building blocks, or *classes* of defined elements, with which financial statements are constructed by an economic entity reporting per some financial reporting scheme.

The *items* in the financial statements of a specific economic entity represent in words and numbers certain entity resources, claims against those resources, and the effects of transactions and events, circumstances, and other phenomenon that result in changes in those resources and claims. Those words and numbers are statements the economic entity makes to describe their financial position and financial performance.

These classes of building blocks are *intentionally interrelated mathematically* within the four core statements that make up a financial report; this is called 'articulation'.

Intermediate components, i.e. subtotals, can be used to represent the items of an economic entity within the items that comprise a financial report of the economic entity. However, these intermediate components and the items must fit into the core framework of the classes of elements that are the building blocks of any financial report created using a specific reporting scheme.

The balance sheet provides a roll up of assets, a roll up of liabilities and equity, and is bound by the rule “Assets = Liabilities + Equity”. The income statement is used to compute the roll up total “Net Income” and there are rules for how the intermediate components (i.e. subtotals) of Net Income roll up. Net income then flows to the statement of changes in equity which is a roll forward which reconciles beginning and ending equity on the current and prior balance sheets. The cash flow statement is a roll up of Net Cash Flow, rules that specify how the intermediate components (i.e. subtotals) of net cash flow roll up, and a roll forward of the asset Cash and Cash Equivalents which reconciles the beginning and ending balance of that asset on the balance sheet.

And so, the primary financial statements are explained by:

1. The accounting equation.
2. Some set of elements of the financial statements such as those for IFRS: Assets, Liabilities, Equity, Contributions from Holders of Equity Claims, Distributions to Holders of Equity Claims, Income and Expenses, Income, Expenses.
3. The fundamental relations between the elements where T0 is the beginning balance sheet date, T1 is the ending balance sheet date, and P1 is the current period that reconciles the beginning and ending balance sheet: 0 = Equity\(^{T0}\) + Income\(^{P1}\) - Expenses\(^{P1}\) + ContributionsFromholdersOfEquityClaims\(^{P1}\) – DistributionsToholdersOfEquityClaims\(^{P1}\) + Assets\(^{T1}\) – Liabilities\(^{T1}\)

27 Four statement model, http://xbrlsite.azurewebsites.net/2019/Core/core-ifrs/FourStatements_IFRS.jpg
29 Core Elements of Financial Statements (IFRS), http://xbrlsite.azurewebsites.net/2019/Core/core-ifrs/
While the model shown above which is based on “Assets = Liabilities and Equity”; some economic entities use different sorts of models. For example, some economic entities report using a liquidation basis style balance sheet where “Assets - Liabilities = Net Assets”. “Net Assets” and “Equity” are two different labels for what is the same concept.

Using the rules of mathematics, the equation “Assets = Liabilities + Equity” can be converted to “Assets - Liabilities = Equity”.

While standards setters do provide an excellent overview of the high-level elements of financial statements, their explanations can be further enhanced and made more complete as I explain in the document Enhanced US GAAP Financial Statement Elements. That document explains the enhancements made to the ten core element definitions provided by the FASB in three ways. First, it puts these definitions in machine-readable form. Second, it puts the elements in context by showing the associations between the concepts. Third, it adds additional important concepts that are ultimately defined implicitly or explicitly by the FASB to provide a complete set of core high-level financial report elements.

While a financial report is not a static form it is not random either. Financial reports follow patterns and these patterns can be explained using specific models to account for and manage the variability inherent in a financial report. Each set of items in the financial report of an economic entity must follow the accounting equation and the elements of a financial statement defined by some financial reporting scheme.

Double-entry financial accounting works this way by definition. Double-entry accounting was the invention of medieval merchants and was first documented by the Italian mathematician

And so, professional accountants tie their internal implementations of a financial reporting scheme, their “items” are reconciled to the “classes” which form the building blocks of a financial report per a specific reporting scheme by creating a chart of accounts. Every financial reporting scheme, be it US GAAP or IFRS or IPSAS or GAS or any other financial reporting scheme works exactly this same way.

Importance of Well-organized Chart of Accounts

Like most things, the capability of a professional accountant to set up a well-organized chart of accounts is a bell-shaped curve. Therefore, some accountants perform this task extremely well, some perform it extremely poorly, but most accountants are average.

A chart of accounts is part of the foundation of an accounting information system. If that foundation is misaligned, you are building on an unstable foundation. The issues of information volume and complexity exacerbate the problem of a poorly organized chart of accounts even more.

As accountants know, if you have a well-organized chart of accounts things work out better than if they you don’t. Having a well-organized chart of accounts is particularly important if you desire to automate accounting and reporting processes. Attempting to automate a poorly organized chart of accounts will tend to lead to failure.

So, what if someone organized, or helped you organize, your chart of accounts? What if you took something like the US GAAP XBRL Taxonomy or IFRS XBRL Taxonomy, further built it out to add missing details\footnote{Charles Hoffman, CPA, Demystifying the Role of Ontologies in XBRL-based Digital Financial Reporting, http://xbrlsite.azurewebsites.net/2019/Library/DemystifyingOntologies.pdf}, and then used that as a base to construct a complete taxonomy or ontology-like thing that could be used for your internal reporting purposes?

Three key patterns of information are necessary:

1. The high-level elements of a financial statement which your specific entity uses to report. You can think of these as the “branches” of your report.
2. The low-level chart of accounts that you use to post transactions. You can think of these as the “leaves” of your report.
3. The changes or grouping codes used to reconcile what made the beginning balance of your balance sheet accounts “change” into the ending balances of your balance sheet accounts.

This notion of “branches” and “leaves” is described in the document *Accounting Process Automation Using XBRL*. In another document, *General Ledger Trial Balance to External Financial Report*, I discuss list item #3 and a step-by-step guide to creating a modern financial statement creation platform for internal and external financial reporting.

Rajib Doogar, an accounting professor at the University of Washington Bothell Campus, explained his notion of looking at the general ledger as “trees”, “branches”, and “leaves” and explaining the matrix algebra model behind these relations. This is very helpful information and significantly helped in organizing these ideas.

Our addition to Doogar’s matrix model is the notion that every real account (balance sheet account) has a roll forward associated with it that explains all the changes that occurred between the beginning balance sheet date and the ending balance sheet date. For example, here is the roll forward of the account “Cash and Cash Equivalents”:

<table>
<thead>
<tr>
<th>Cash and Cash Equivalents [Roll Forward]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash and Cash Equivalents, Beginning Balance</td>
</tr>
<tr>
<td>3,000</td>
</tr>
<tr>
<td>Collection of Receivables</td>
</tr>
<tr>
<td>3,000</td>
</tr>
<tr>
<td>Payment of Accounts Payable</td>
</tr>
<tr>
<td>(2,000)</td>
</tr>
<tr>
<td>Additional Long-term Borrowings</td>
</tr>
<tr>
<td>6,000</td>
</tr>
<tr>
<td>Repayment of Long-term Borrowings</td>
</tr>
<tr>
<td>(1,000)</td>
</tr>
<tr>
<td>Capital Addition of Property, Plant, and Equipment</td>
</tr>
<tr>
<td>(5,000)</td>
</tr>
<tr>
<td>Proceeds from Sale of Property, Plant, and Equipment</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>Cash and Cash Equivalents, Ending Balance</td>
</tr>
<tr>
<td>4,000</td>
</tr>
</tbody>
</table>

Here is the roll forward of “Receivables”:

36 Accounting Coach, *What is the difference between a nominal account and a real account?*, https://www.accountingcoach.com/blog/what-is-the-difference-between-a-nominal-account-and-a-real-account
There are three very important items of interest when it comes to the two roll forwards shown above and the roll forward of every other real balance sheet account:

1. 100% of all transactions go through a balance sheet account and the transactions can be grouped into specific categories.
2. The specific categories are different for each balance sheet account.
3. It is the accounts of the chart of accounts (the beginning and ending balances of the roll forward) and the changes in the accounts (the grouping categories) that are used to construct the core quantitative information that ends up in a financial report.

When combined with the elements of a financial report specified by a standards setter the information in #1, #2, and #3 form the core quantitative information that makes up the primary financial statements and the financial account disclosures that provide details of the subclassifications of an account or roll forwards of the changes that are required to be disclosed all organized within the “branches” that are (a) specified by a standards setter and (b) selected by a reporting economic entity because of the industry they are in or the accounting activities that they report and the choices between allowed alternative approaches which they select.

To be crystal clear here, we are NOT saying that every economic entity can have an organization of the elements of a financial statement, chart of accounts, and transaction change grouping thrust upon it that it is required to use for its internal or external financial reporting.

To the contrary. We are saying that every economic entity could create, could have someone else create for them, use some standard industry best practices set of information, or could in some other way define the (a) financial report organization or the “branches”, (b) the chart of accounts that fits into those branches or the “leaves”, and (c) the transaction change grouping codes that would be used to accumulate information about the changes between the beginning balance sheet and the ending balance sheet.
Further, we are not suggesting that every one of the roll forwards would actually be disclosed within an economic entities financial report. That is not required. But we are pointing out that this is an excellent way to manage the internal process of creating either the internal financial report and the external financial report whether the roll forward information is explicitly disclosed or not.

Notion of the Transaction Change Grouping Code

Most accounting systems today do not require or even provide for the notion of a strong set of what we call “transaction change grouping codes” that are used to enter each and every entry that is posted in the general journal. What we are suggesting is that mandating and using such strong transaction change codes would be a very good idea and helpful to accountants and auditors. By “strong” we mean that the transaction change grouping codes play a similar and prominent role as the chart of accounts code in posting transactions.

This is not to say that every transaction change grouping code would be manually assigned. In fact, most would be automatically assigned. For example, all sales transactions that come from the sales/receivables subsystem would have the codes automatically assigned by that subsystem. This would be similarly true for the accounts payable subsystem and other accounting subsystems.

Matrix of Allowed Transaction Possibilities

Another benefit of using a transaction change grouping code on a transaction is that transactions can be proactively controlled to avoid posting errors. As we pointed out, each real chart of accounts account has a specific set of appropriate transaction change grouping codes that are available for that specific account. The set of allowed transaction grouping codes can be leveraged by software applications that enter transactions, a matrix of allowed transaction possibilities for a specific account.

Further, during an audit, software applications can be used to probe general journal transactions for odd chart of account/transaction change grouping code combinations.
Overview of How Transaction Change Grouping Codes Work

We created a very basic prototype\(^39\) to help explain how general journal entries flow from the general journal to the financial report.

Step 1 is that an XBRL taxonomy is created that represents the reporting style of the economic entity, a XBRL reporting taxonomy. The chart of accounts is set up and is aligned with the XBRL reporting taxonomy. Accounting systems are modified to require the transaction change grouping code.

Reporting taxonomies could be created by an individual organization, provided by a CPA firm or consultant, provided by an industry group, provided by a software vendor, etc.

Step 2 is that transactions are entered into the accounting system\(^40\). I have entered a small set of transactions to test this idea. This is what the general journal might look like\(^41\):

You can get the normal looking report of transactions that have been entered into the general ledger\(^42\).

<table>
<thead>
<tr>
<th>General Journal by Entry</th>
<th>10/27/2019 3:04:30 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE</td>
<td>Account</td>
</tr>
<tr>
<td>JE-1001</td>
<td>basic:CashAndCashEquivalents</td>
</tr>
<tr>
<td>JE-1002</td>
<td>basic:LongtermDebt</td>
</tr>
<tr>
<td>JE-1003</td>
<td>basic:CashAndCashEquivalents</td>
</tr>
<tr>
<td>JE-1004</td>
<td>basic:Inventories</td>
</tr>
<tr>
<td>JE-1005</td>
<td>basic:AccountsPayable</td>
</tr>
<tr>
<td>JE-1006</td>
<td>basic:Receivables</td>
</tr>
</tbody>
</table>

\(^39\) Prototype, http://xbrlsite.azurewebsites.net/2019/Core/core-auditChain/

\(^40\) Prototype transaction entry form, http://xbrlsite-app.azurewebsites.net/MatrixOfPossibleTransactions/GeneralJournalTransactionEntry.aspx

You can get the typical report of transactions summarized by general ledger chart of accounts\(^{43}\).

<table>
<thead>
<tr>
<th>General Ledger Trial Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE</td>
</tr>
<tr>
<td>000-1106-00</td>
</tr>
<tr>
<td>JE-1061</td>
</tr>
<tr>
<td>JE-1063</td>
</tr>
<tr>
<td>JE-1066</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>000-1206-00</td>
</tr>
<tr>
<td>JE-1061</td>
</tr>
<tr>
<td>JE-1063</td>
</tr>
</tbody>
</table>

But you can also get a report sorted by transaction change grouping code\(^{44}\).

<table>
<thead>
<tr>
<th>General Ledger Trial Balance Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE</td>
</tr>
<tr>
<td>JE-1062</td>
</tr>
<tr>
<td>JE-1062</td>
</tr>
<tr>
<td>JE-1062</td>
</tr>
<tr>
<td>JE-1062</td>
</tr>
<tr>
<td>JE-1066</td>
</tr>
</tbody>
</table>

These general journal entries can be processed within the system and then summarized information can be generated in the form of an XBRL instance\(^{45}\) or the detailed transactions can be exported from the system into an XBRL Global Ledger format\(^{46}\). XBRL dimensions making use of typed members format\(^{47}\), or other format of your choosing and the transactions can be processed into the form of a report using any system you might prefer.

\(^{45}\) Summarized XBRL instance, http://xbrlsite.azurewebsites.net/2019/Core/core-journal/basic-SampleInstance.xml

Policies and other nonnumeric disclosures and other information that flows into the financial report from non-double-entry accounting systems can be appended to the report and serialized using the general journal transactions.

Note that the renderings that you see are created automatically using software algorithms that understand how to render XBRL-based financial reports. In addition to an auto-generated application being generated; auto-generated Inline XBRL can be generated or more pixel perfect representations can be created using either automated or manual processes:

49 Auto-generated Inline XBRL, http://xbrlsite.azurewebsites.net/2019/Core/core-trialbalance/basic-SampleInstance.html

50 More pixel perfect rendering, http://xbrlsite.azurewebsites.net/2018/RoboticFinance/basic-SampleInstance-InlineXBRL2b_FormattedTables.html
But what is even more interesting is being able to interact with a financial report using a software application that understands financial reports. Such applications work more like pivot table which let you reconfigure the report for your preferences.

The pivot table functionality and the drilldown capabilities enabled by the transaction change grouping code are hard to show in a static image. So, I created this video51 which demonstrates the sort of functionality you might expect from software applications in the very near future. Such features will only get better over time.

51YouTube, Drill Down and the Transaction Change-type Code, https://www.youtube.com/watch?v=aEoNdYzT2g&feature=youtu.be
Retrofitting to Existing Systems

While existing accounting systems that don’t provide a place to enter a transaction change grouping code, some of this sort of functionality can still be enabled. Using artificial intelligence type software algorithms software can be used to sort out transactions and get those transactions into an internal or external financial report.

Although, this “bolt on” type of an approach provides minimal leverage and benefits of the XBRL-based metadata in processing your transactions within an accounting system.

Considering the Impact of What is Needed from Base Financial Reporting Taxonomies

Neither the US GAAP XBRL Taxonomy nor the IFRS XBRL Taxonomy have the metadata necessary to enable the sort of processing we are trying to demonstrate here. As explained in the document *Demystifying the Role of Ontologies in XBRL-based Digital Financial Reporting*[^52], financial reporting XBRL taxonomies created by regulators and standards setters today tend to be little more than human-

readable “pick lists” that are somewhat usable by machine-based processes. Over time, as others provide additional metadata that enables enhanced capabilities and as standards setters and regulators learn to harness the true power of XBRL-based digital financial reporting, these large base taxonomies could improve. On the other hand, they might never improve as standards setters and regulators leave it to the market to provide enhancements.

Changes are Inevitable and are Not Dependent on XBRL

XBRL is only a technical syntax. There are many other technical syntaxes that could be used to enable the sort of functionality we are describing in this document. Another is RDF and OWL or what is referred to as the semantic web stack of technologies.

Each technology approach has pros and cons. Efforts such as the Object Management Group (OMG) effort to create Standard Business Report Model (SBRM)53 will help professional accountants understand the real power of these sorts of technologies and better harness those powers.

SBRM formally documents a logical conceptualization of a business report in both human-readable and machine-readable models. Once software engineers understand the logical model of a report, they will be able to create easier to use software that is far more functional. The current evolution of software applications tends to make it harder to understand the real possibilities that technology has to offer.

Conclusion

“Digital” opens up new possibilities for how double-entry accounting information systems can function. Rather than the more “open” type systems that exist today which pushes work to the end of the month and the grueling, mindless, mechanical process of fixing errors; a new more “closed” or “guided” approach which leverages accounting knowledge in machine readable form can be implemented which leverages lean six sigma techniques and philosophies to managing accounting system transaction quality. Combining artificial intelligence, structured machine-readable information, high-quality curated metadata; accounting, reporting, auditing, and analysis processes can be supercharged.