

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

1

This is an overview of the essence of the method1 we have created for constructing a high-quality XBRL

taxonomy and related XBRL instance. The method would not necessarily be obvious; it took us about 10

years to figure it out. We are applying the method to the IPSAS reporting standards to create an XBRL

taxonomy for that reporting scheme to further demonstrate and test this method2.

Keep in mind that the objective is not to meet poorly defined, substandard quality standards. The

objective is to meet a correctly defined quality hurdle; one that you would want to have if you are using

XBRL internally for automation of accounting, reporting, auditing, or analysis internally within an

organization; and further to be able to prove the quality of the XBRL taxonomy and resulting XBRL

instance. Dumbing down the quality standards masks the problem, it does not solve the problem. Our

objective is to guarantee high-quality.

For the next level of detail, please see the document Open Source Framework for Implementing XBRL-

based Digital Financial Reporting3. That document points to example XBRL linkbases and other resources

that shows exactly how these details are implemented. Ultimately, we will provide a complete IPSAS

XBRL Taxonomy implemented using this method and related XBRL instances.

Overview of Steps

First, recognize that an XBRL taxonomy is not one big thing, it is a collection of smaller pieces. You work

with ONE PIECE AT A TIME. I will call each piece a “fragment”. A fragment could be a Network, a

Table/Hypercube, or a Block. To create or modify an XBRL taxonomy fragment, the following steps are

undertaken:

1. Create (or modify) the fragment following the defined taxonomy architecture and model
structure rules. Provide all properties. Provide constraints such as data type, period type,
balance type for each report element. Provide any other necessary constraints. Provide
documentation, labels, and references to authoritative documentation necessary for report
element. Provide any other documentation and references.

2. Create (or modify) the mathematical rules to which that fragment relates.
3. Create (or modify) the continuity cross check rules to which relate to that fragment.
4. Create (or modify) the impute rules to which relate to that fragment.
5. Create (or modify) the class/type rules to which that fragment relates.
6. Create (or modify) the disclosure mechanics rules to which exist for that fragment.

1
 Charles Hoffman, CPA and Rene van Egmond, Method of Implementing a Standard Digital Financial Report Using

the XBRL Syntax,
http://xbrlsite.azurewebsites.net/2019/Library/MethodForImplementingStandardFinancialReportUsingXBRL.pdf
2
 International Public Sector Accounting Standards XBRL Taxonomy Prototype Project,

http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-
taxono.html
3
 Charles Hoffman, CPA, et. al., Open Source Framework for Implementing XBRL-based Digital Financial Reporting,

http://xbrlsite.azurewebsites.net/2018/Library/OpenSourceFrameworkForImplementingXBRLBasedFinancialRepor
ting-2018-12-05.pdf

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://xbrlsite.azurewebsites.net/2019/Library/MethodForImplementingStandardFinancialReportUsingXBRL.pdf
http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-taxono.html
http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-taxono.html
http://xbrlsite.azurewebsites.net/2018/Library/OpenSourceFrameworkForImplementingXBRLBasedFinancialReporting-2018-12-05.pdf
http://xbrlsite.azurewebsites.net/2018/Library/OpenSourceFrameworkForImplementingXBRLBasedFinancialReporting-2018-12-05.pdf

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

2

7. Create (or modify) the reporting checklist rules to which that fragment relates.
8. Create (or modify) the test (or real) XBRL instance to which that fragment relates.
9. Test (or re-test) the integrity of the individual fragment XBRL instance and XBRL taxonomy

against all defined rules (structural, mathematical, continuity, class/type, mechanical,
reporting).

10. Test (or re-test) the integrity of the entire report XBRL instance and XBRL taxonomy against all
defined rules (structural, mathematical, continuity, class/type, mechanical, reporting).

11. Test (or re-test) the consistency of the entire report XBRL instance and XBRL taxonomy against
all prior XBRL instances and related XBRL taxonomies.

12. Test (or re-test) the consistency of the entire report XBRL instance and XBRL taxonomy against
peer or comparable reports XBRL instances and related XBRL taxonomies.

Repeat for each new fragment added.

Here is a more detailed walkthrough of the steps which are summarized above. Pretend that you have

an empty XBRL taxonomy.

Step 1: Create (or modify) the fragment following the defined taxonomy

architecture and model structure rules.

In this walk through we will first create the fragment “Statement of Financial Position,

Classified”. Notice that the XBRL presentation relations, XBRL calculation relations, and XBRL definition

relations use the same Network URI to identify the fragment. Notice that an explicit [Table] (or

hypercube) was used to define the fragment. How this is done I don’t want to get into, this is software

implementation independent, but they do have to get this right.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

3

Provide all required properties of a report element. Provide constraints such as data type, period type,

balance type for each report element. Provide any other necessary constraints. Provide

documentation, labels, and references to authoritative documentation necessary for report element.

Provide any other necessary documentation and references.

Note that the most restrictive constraints possible should be provided. For example, rather than using a

data type of “xbrli:monetaryItemType”, it is better to use the data type

“dtr:nonNegativeMonetaryItemType”4 for concepts that would always be reported using a POSITIVE fact

value.

Again, the details of exactly how to represent a fragment within an XBRL taxonomy is very important but

is beyond the scope of this overview.

Step 2: Create (or modify) the mathematical rules to which that fragment

relates.

So, the majority of the mathematical rules were defined or auto-generated when the XBRL presentation

and definition relations were defined in the form of XBRL calculation relations. But, there is ONE

additional mathematical rules that needs to be defined:

“Assets = Liabilities and Net Assets/Equity”

Step 3: Create (or modify) the continuity cross check rules to which relate to

that fragment.

The following continuity cross check rules should be defined for the statement of financial position

(balance sheet):

“Assets = Liabilities and Net Assets/Equity”

“Assets = Current Assets + Noncurrent Assets”

“Liabilities = Current Liabilities + Noncurrent Liabilities”

“Net Assets = Controlling Interest + Noncontrolling Interest”

“Liabilities and Net Assets/Equity = Liabilities + Net Assets/Equity”

4
 XBRL International Data Type Registry, http://www.xbrl.org/dtr/type/numeric-2012-06-30.xsd

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://www.xbrl.org/dtr/type/numeric-2012-06-30.xsd

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

4

Step 4: Create (or modify) the impute rules to which relate to that fragment.

Impute rules are used to derive unreported facts. For example, if the line item “Noncurrent Assets” is

not reported, the continuity cross check rule “Assets = Current Assets + Noncurrent Assets” can be

leveraged to derive a value for the non-reported line item “Noncurrent Assets”. Impute rules only need

to be provided to the extent that line items are not required to be reported. Or, saying this another way;

if every high-level line item is reported than none need to be derived, therefore no impute rules need to

be provided. Here are a handful example impute rules:

IF Noncurrent Assets is not reported and Assets was reported and Current Assets was reported

THEN Noncurrent Assets = Assets - Current Assets.

IF Controlling Interest is not reported and Net Assets was reported and Noncontrolling Interest

was reported THEN Controlling Interest = Net Assets - Noncontrolling Interest.

IF Noncurrent Liabilities is not reported and Liabilities was reported and Current Liabilities was

reported THEN Noncurrent Liabilities = Liabilities - Current Liabilities.

…and so forth.

Step 5: Create (or modify) the class/type rules to which that fragment relates.

Class/type rules prevent the misuse of concepts in one role that were intended to be used for another

role. For example, the concept “Receivables, Net, Noncurrent” is intended to be PART OF Noncurrent

Assets and should NEVER be used to represent, say, a Current Asset. Another example of a class/type

misuse is to use the concept “Reserves” as PART OF Noncurrent Liabilities. Class/type rules prevent

these sorts of errors. This is critical when economic entities creating reports can modify the statement

of financial position model.

For the balance sheet, the class/type rules are built into the XBRL calculation relations.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

5

Step 6: Create (or modify) the disclosure mechanics rules to which exist for that

fragment.

Disclosure mechanics rules relate to the mechanical relationships between the report elements that

make up a fragment. The following are examples of the disclosure mechanics rules that relate to the

statement of financial position, classified (balance sheet).

1. A statement of financial position is made up of TWO disclosures: a roll up of Assets; a roll up of
Liabilities and Equity.

2. A statement of financial position disclosure is REQUIRED to be represented using the TABLE
“ipsas:StatementOfFinancialPotionClassifiedTable”.

3. Assets [Roll up] is defined to be a concept arrangement pattern of “[Roll Up]”.
4. Assets [Roll up] requires the concept “ipsas:Assets” as the TOTAL concept of the roll up.
5. Liabilities and Net Assets/Equity [Roll up] is defined to be a concept arrangement pattern of

“[Roll Up]”.
6. Liabilities and Net Assets/Equity [Roll up] requires the concept “ipsas:NetAssetsEquity” as the

TOTAL concept of the roll up.

Other additional rules could be provided such as any [Axis] that is REQUIRED to be reported, any line

items that are required to be reported, and any other rules that make it possible to uniquely identify the

statement of financial position within an XBRL-based financial report.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

6

Step 7: Create (or modify) the reporting checklist rules to which that fragment

relates.

The reporting checklist rules are designed to indicate when a disclosure is required to be provided

within a report. A disclosure could always be required such as the balance sheet, income statement,

and cash flow statement; or the nature of economic entity, basis of reporting, or significant accounting

policies. Or, a disclosure could be required when a specific line items is reported within a financial

report. For example, if the “Inventories” line item is provided on a balance sheet then the “Inventories

Subclassifications” disclosure is required to also be reported.

Currently, because we are only getting started creating taxonomy fragments, we only have one

fragment. Also, the balance sheet is a required disclosure, so we would have the reporting checklist

rule:

“A Statement of Financial Position is REQUIRED to exist in a financial report.”

Step 8: Create (or modify) the test (or real) XBRL instance to which that

fragment relates.

The next step is to enable the ability to TEST the XBRL taxonomy fragment which has been created as

well as the RULES used to both describe how this fragment should be created within an extension XBRL

taxonomy and its related XBRL instance and verify using automated machine-based processes that the

XBRL instance and the XBRL taxonomy have, in fact, been created per these defined rules. And so, we

create the XBRL instance. (Remember that all of the rules are represented in machine-readable form

just like the XBRL instance and XBRL taxonomy. All rules are represented using the XBRL technical

syntax.)

And so here is what the XBRL instance might look like within a software application:

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

7

Step 9: Test (or re-test) the integrity of the individual fragment XBRL instance

and XBRL taxonomy against all defined rules (structural, mathematical,

continuity, class/type, mechanical, reporting).

The next step is to run TEST of the fragment (XBRL instance and related XBRL taxonomy) and the RULES

used to both describe how this fragment should be created and verify using automated machine-based

processes that the XBRL instance and the XBRL taxonomy have, in fact, been created per these defined

rules. Since the rules are (a) provided and (b) machine readable; then software can be used to verify the

XBRL instance information against the specified rules. (This is as contrast to not having rules or not

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

8

having software which would mean that all of these details would need to be tested using manual

human-based processes; you CANNOT simply ignore the details by not looking at them.)

There are the validation results provided by two different software applications for this fragment:

Since there are no inconsistences reported, we can rest assured that the report is consistent with all of

the provided rules.

Step 10: Test (or re-test) the integrity of the entire report XBRL instance and

XBRL taxonomy against all defined rules (structural, mathematical, continuity,

class/type, mechanical, reporting).

Step 10 would be to put the fragment that we just created in with other fragments. While STEP 9 tests

the integrity of the single fragment, STEP 10 tests the fragment relative to other existing

fragments. Since we don’t have any additional fragments yet, we don’t need to perform this step

because the results of STEP 9 and STEP 10 would be the same because there is only a single fragment at

this point in time.

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

9

Step 11: Test (or re-test) the consistency of the entire report XBRL instance and

XBRL taxonomy against all prior XBRL instances and related XBRL taxonomies.

Step 11 we will skip for now because I am the only one creating reports at the moment. This step helps

compare different interpretations of the XBRL taxonomy and the rules by comparing and contrasting

reports created for multiple periods for the same economic entity.

Step 12: Test (or re-test) the consistency of the entire report XBRL instance and

XBRL taxonomy against peer or comparable reports XBRL instances and related

XBRL taxonomies.

Step 12 we will skip for now because, similar to Step 11, I am the only one creating reports at the

moment. This step helps compare different interpretations of the XBRL taxonomy and the rules by

comparing and contrasting reports created for multiple economic entities for the same period.

REPEAT! Repeat process for the next new fragment of for any modification of an

existing fragment.

After all inconsistencies have been REMOVED by either (a) fixing the XBRL Taxonomy, (b) fixing the XBRL

instance, or (c) fixing the rules; we move on to the next report fragment.

To follow this project, please see this blog post:

http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-

taxono.html)

VERIFY: Re-verify the result for the entire report for all automatable validation.

After everything is deemed correct, re-verify using automated processes to be sure that the

report is consistent with all machine-readable rules. The following is a summary view of the

verification:

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-taxono.html
http://xbrl.squarespace.com/journal/2019/1/16/international-public-sector-accounting-standards-xbrl-taxono.html

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

10

The following are detailed validation results:

Overall process:

Model structure detail:

Type/class detail:

Fundamental accounting concept relations detail:

Disclosure mechanics detail:

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

CC0 1.0 Universal (CC0 1.0) Public Domain Dedication https://creativecommons.org/publicdomain/zero/1.0/

11

Reporting checklist detail:

Manual review (i.e. To Do list):

https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

