
1

Effective Automation of Record to Report Process

Narrative for Iteration #4
By Charles Hoffman, CPA

January 25, 2021

The purpose of this document is to provide details for Iteration #4 of my record to report prototype.

This iteration builds on Iteration #1 Accounting Process Automation, Record to Report (R2R) Plus!1,

iteration #2 Continuous Accounting2, and iteration #3 Effective Automation of Record to Report Process3.

Fundamentally, the objective of this prototype of record to report is to automate as much of the

accounting, reporting, auditing, and analysis steps as possible using global standard XBRL technical

syntax and applying a best practices-based method4 to achieve this objective.

What is new in this iteration #4 is summarized as follows:

• I am using the Microsoft Dynamics accounting system database as the accounting system that is

populated with The World Online (TWO) sample company data (as contrast to using hledger,

ledger, and my Microsoft Access database application prototype.

• Engine B Common Data Model (CDM)5 is used (as contrast to audit schedules that I prototyped)

• Substantially improved version of my XBRL instance creator is being used (prior versions were

not complete systems, this is a complete system)6

For details of Iteration #4, please see this documentation which provides a summary of steps and

information for each step that is synced to the step numbers in this document:

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/

The objective is to flow transactions from the accounting system general ledger all the way through to a

complete financial report7.

STEP 1: Accounting system of an economic entity
The starting point of this process is the accounting system of some economic entity. For this iteration

the “accounting system” is a Microsoft Dynamics accounting system subset of tables and data for the

1 Accounting Process Automation, Record to Report (R2R) Plus!,
http://xbrlsite.azurewebsites.net/2020/master/automation/index.html
2 Continuous Accounting, http://xbrlsite.azurewebsites.net/2020/master/continuous-accounting/index.html
3 Effective Automation of Record to Report Process, http://xbrl.squarespace.com/journal/2020/11/3/effective-
automation-of-record-to-report-process.html
4 Understanding Method (Abridged),
http://xbrlsite.azurewebsites.net/2020/Library/UnderstandingMethod_Abridged.pdf
5 Engine B Common Data Model (CDM), http://xbrlsite.com/2020/prototypes/cdm/
6 Free Open Source Tool for Creating Quality XBRL-based Digital Financial Reports,
http://xbrl.squarespace.com/journal/2020/12/8/free-open-source-tool-for-creating-quality-xbrl-based-digita.html
7 End Result, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-RENDERED.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/
http://xbrlsite.azurewebsites.net/2020/master/automation/index.html
http://xbrlsite.azurewebsites.net/2020/master/continuous-accounting/index.html
http://xbrl.squarespace.com/journal/2020/11/3/effective-automation-of-record-to-report-process.html
http://xbrl.squarespace.com/journal/2020/11/3/effective-automation-of-record-to-report-process.html
http://xbrlsite.azurewebsites.net/2020/Library/UnderstandingMethod_Abridged.pdf
http://xbrlsite.com/2020/prototypes/cdm/
http://xbrl.squarespace.com/journal/2020/12/8/free-open-source-tool-for-creating-quality-xbrl-based-digita.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-RENDERED.html

2

sample economic entity The World Online (TWO). The complete accounting system was available within

a local Microsoft SQL Server:

For this iteration, a subset of a few accounting system tables (chart of accounts information, general

ledger transactions, ….) were moved from Microsoft SQL Server to Microsoft Access database8 in order

to make all of this information available for this prototype.

The following is a list of those tables as they would appear within the provided Microsoft Access

database:

8 Microsoft Access database of Microsoft Dynamics TWO sample company data,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_AccountingSystem.zip

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_AccountingSystem.zip

3

Here is a screen shot of table “GL00100”, chart of accounts:

This Iteration #4 focuses on performing 100% of all steps for a small set of accounting system tables.

We are focusing on the chart of accounts (GL00100) and the general journal entries (GL20000) in this

iteration. The number of accounting systems tables will expand in future iterations.

And so in summary, the point of step 1 is to make you aware of the accounting system database that is

being used as a starting point which is the Microsoft Access database TWO_AccountingSystem.accdb

which is made available for this prototype.

STEP 2: Create Complete XBRL Taxonomy
In order to get information from an accounting system into an XBRL-based report, the accounting

system information needs to be mapped and converted to XBRL concepts. Generally, a financial

reporting scheme XBRL Taxonomy would be used such as US GAAP or IFRS. For this Iteration #4, we will

create and use a small but very high-quality ample XBRL Taxonomy with a minimum number of concepts

but correctly created in order to enable the successful execution of all the steps necessary for report

production. No extension concepts will be used in this iteration.

Here is the XBRL Taxonomy that we will be using for Iteration #4 which will include:

• XBRL taxonomy schema

4

• XBRL labels

• XBRL linkbases (presentation, calculation, definition)

• XBRL formulas

• Disclosures taxonomy

• Disclosure mechanics rules

• Reporting checklist rules

• Fundamental accounting concept relations rules

• Type-subtype associations rules

• Any company specific extensions necessary to create complete report

Here is a basic visualization of the core information that will exist in the XBRL taxonomy9:

The complete XBRL Taxonomy can be found here10:

For information about how to create an XBRL taxonomy correctly, please see Essentials of XBRL-based

Digital Financial Reporting11.

9 XBRL Taxonomy basic representation,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/mini_ModelStructure.html
10 Full XBRL Taxonomy for Iteration #4, see section “Complete XBRL Taxonomy”,
http://xbrlsite.azurewebsites.net/2020/Prototype/iteration2/
11 Essentials of XBRL-based Digital Financial Reporting,
http://xbrlsite.azurewebsites.net/2021/essentials/EssentialsOfXBRLBasedDigitalFinancialReporting.pdf

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/mini_ModelStructure.html
http://xbrlsite.azurewebsites.net/2020/Prototype/iteration2/
http://xbrlsite.azurewebsites.net/2021/essentials/EssentialsOfXBRLBasedDigitalFinancialReporting.pdf

5

STEP 3: Mapping Accounting System Accounts to XBRL Taxonomy

Concepts
This step involves using the XBRL Taxonomy created in STEP 2 and the accounting system chart of

accounts table in STEP 1 and map the GL accounts to the XBRL concepts used to create the XBRL-based

financial report.

The mapping could take several forms. XBRL concepts could be added to a field in the accounting

system database table which contains the chart of accounts. For example, a user defined field that is

available could be used or a new field could be added to the accounting system table (if that is allowed).

That is the approach we took.

Alternatively, the mapping could be performed in the CDM table after accounting system information is

put into the CDM. Alternatively, a separate table could be created which contains the mapping between

the XBRL concepts and chart of accounts.

For Iteration #4, the approach of adding the XBRL concept mappings to the accounting system database

was used which is mimicked by an Excel spreadsheet for easy observation12.

The Excel spreadsheet provided and the Microsoft Access database table dbo_GL00100 have exactly the

same information. The COMPLETED version of the mappings for the table dbo_GL00100 is in the

Microsoft Access database TWO_Local_Iteration4.accdb13.

STEP 4: Understanding Work Tags
To prepare for the next step, read the article Tales of the Cloud: The Story of Worktags14 which explains

the notion of work tags. Effectively, work tags are a mechanism for categorizing general ledger

transactions.

12 Completed mapping for Iteration #4 in Excel,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/dbo_GL00100.zip
13 TWO_Local_Iteration4.accdb,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration4.zip
14 Tales of the Cloud: The Story of Worktags, https://blog.workday.com/en-us/2012/tales-of-the-cloud-the-story-
of-worktags.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/dbo_GL00100.zip
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration4.zip
https://blog.workday.com/en-us/2012/tales-of-the-cloud-the-story-of-worktags.html
https://blog.workday.com/en-us/2012/tales-of-the-cloud-the-story-of-worktags.html

6

We will take the approach of assigning worktags to every general ledger transaction entry. Further, we

are formally defining the worktags in the XBRL taxonomy created in step 2. Assume that worktags are

entered when transactions are entered into the general ledger so that work is not pushed to the end of

the month or end of the year. Note that worktag assignment will very likely be 80% automated and 20%

manually assigned with an increase in the automated percentage and decrease in the manually assigned

percentage over time.

We will take work tags to the extreme by coding 100% of general ledger transactions using work tags

that are defined within our base XBRL taxonomy. This allows general ledger information to be grouped

by XBRL concept and by work tag. This effectively allows for the changes to an account (i.e. roll forward)

to be grouped into type of change. This enables the effective auto generation of a complete financial

statement as will be seen in a moment.

STEP 5: Apply Work Tags to General Ledger Transactions
After you understand work tags and after you create the XBRL taxonomy in STEP 2 which provides the

work tags themselves, general ledger transactions can be grouped effectively to generate the

information necessary to create a proper balance sheet, income statement, cash flow statement, and

changes in equity.

Note that I went into the accounting system general ledger transactions table (dbo_GL20000) and

assigned 98% of work tags automatically using existing metadata that existed within the accounting

system and then had to make a few adjustments to capture the other 2% of transactions. The field

“Tag” was added to the accounting system database table dbo_GL20000. Alternative approaches could

be used to create a spot in the accounting system for mapping or provide the mapping external to the

accounting system. Either approach will work.

The TWO accounting system has 22,301 rows in the general ledger transactions table (dbo_GL20000).

Per above, 21,855 or 98% of transactions had work tags applied automatically. The remaining 446 or 2%

had to be adjusted manually. Normally, work tags can be assigned either automatically by the

accounting system processing of transactions for the vast majority of transactions; the remaining

transactions will require manual entry either when transactions are entered or sometime during the

accounting cycle. If this is done, automated report generation can be enabled.

I would suggest that work tags be assigned within the accounting system general ledger transactions

table (dbo_GL20000) prior to transferring information into the CDM.

7

STEP 6: Trial Balance Generation
With the XBRL Concepts and XBRL work tabs applied the general ledger trial balance can be generated

not just by general ledger account code of the accounting system, but also by XBRL Concept, XBRL work

tag, and a combination of XBRL Concept and XBRL work tag15:

GL transactions summarized by GL account code: (traditional, _qryJournalEntries_ByAccount)

There are many other grouping of the information that can be created from within the accounting

system; but we are more interested in the sorts of groupings that you COULD NOT do before because

information did not exist in the accounting system database but you CAN DO NOW because we added

the XBRL concept and worktags to the accounting system information. For example, below you see the

pre close general ledger trial balance summarized by XBRL concept:

(_qryJournalEntries_ByXBRLConcept)

15 Examples of transaction and trial balance groupings in Excel (these also exist in the database provided),
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/glTransactionsAndTrialBalance.zip

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/glTransactionsAndTrialBalance.zip

8

Below we make one modification to the query, summarizing the SumOfAmount and Count columns so

that you can see that (a) the trial balance balances (i.e. debits = credits) and that the Count of

transactions is the same as the total number of transactions in the database table dbo_GL20000.

Similarly, we can group the general ledger transactions by the worktags that we assigned as contrast to

the chart of accounts code: (query _qryJournalEntries_ByTag)

Again, looking at this query with totals for the SumOfAmount and Count you see that the debits are

equal to credits again (as one would expect) and that the total count of transactions is the same as the

grouping by XBRL concept:

9

The important point to take away here is that while the set of transactions is the same for each of the

queries of the general ledger transaction (i.e. dbo_GL20000); depending upon what information you ask

for and what information is actually in that table determines what queries you can get from querying

the database.

The query _qryJournalEntries_XBRLConceptAndByTag returns all transactions grouped by BOTH the

XBRL concept and the formal XBRL worktag that was assigned to each general ledger transaction entry:

(again, debits=credits and the count of transactions is the same)

10

Here we see a query (_qryJE_SummaryByAccount_GroupedByConcept) that returns the beginning

balance of every account, changes to the account, and the ending balance of every account that is PRE

CLOSE and summarized by XBRL concept that is mapped to the chart of accounts:

Below you see the preliminary roll forward information by balance sheet account which is retrieved

using the query _qryJournalEntries_XBRLConceptAndByTag: (color coding is added to help you see the

roll forward)

11

And below you see the ultimate objective that we are trying to achieve by going through all this work

which is to create a roll forward POST CLOSE for every balance sheet line item which you can see below

for the line item Cash and Cash Equivalents16:

Here you see a similar example for the Receivables line item roll forward17:

Similarly, roll forwards are provided for each of the seven balance sheet line items that are on the trial

balance. Further, note that the work tags that are used in the general ledger is how the changes are

summarized from the general ledger transactions.

And so, below you see the general ledger trial balance and the summary of changes represented in the

autogenerated XBRL-based financial report that we are creating:

16 Cash and Cash Equivalents Roll Forward,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/contents/index.html#Rendering-CashAndCashEquivalents-Implied.html
17 Receivables Roll Forward, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/contents/index.html#Rendering-Receivables-Implied.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-CashAndCashEquivalents-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-CashAndCashEquivalents-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-Receivables-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-Receivables-Implied.html

12

Trial balance18:

Changes summary19:

18 Trial balance, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/contents/index.html#Rendering-TrialBalance-Implied.html
19 Changes summary, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/contents/index.html#Rendering-Transactions-Implied.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-TrialBalance-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-TrialBalance-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-Transactions-Implied.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/index.html#Rendering-Transactions-Implied.html

13

A set of queries created lets a business professional examine all of this information in detail and at any

level of granularity all the way down to the individual general ledger transaction entry and all the way up

to the summarized information within a financial report.

While queries can be built on top of the accounting system; the queries can likewise be built on top of

the accounting system information exported to the CDM database. As you will see next, the CDM

database is simply the exact same thing as the accounting system database with (a) unnecessary

information eliminated, (b) all table names being standard and (c) all fields within each table being

standard.

STEP 7: Common Data Model (CDM)
The accounting system database tables are converted to the Engine B Common Data Model (CDM). For

this to be possible, first the CDM needs to exist and work correctly and effectively by providing 100% of

the information we need to process the queries. This is the version of the Engine B Common Data

Model (CDM) that I am using20 which is hosted on my server and has been converted from Engine B’s

JSON representation into an XBRL-based representation:

Iteration #4 focused on only TWO of the CDM tables: chartOfAccounts and glDetail. However,

accounting system tables exist for 10 CDM tables.

20 Engine B Common Data Model (CDM), http://xbrlsite.com/2020/prototypes/cdm/Structures.html

http://xbrlsite.com/2020/prototypes/cdm/Structures.html

14

To get the accounting system data out of the accounting system and into the CDM format, I used XBRL.

Effectively, I created two XBRL instances supported by the CMD XBRL taxonomy which verifies that the

XBRL instances are created correctly: chartOfAccounts21; glDetail22.

The accounting system was mapped to the CDM database format (tables and fields) using a SQL query

(SQL Server View). Here are the queries for the two tables used in this Iteration #4. The following is a

copy of the two queries:

chartOfAccounts:

SELECT ACTINDX, Trim([ACTNUMBR_1]) & "-" & Trim([ACTNUMBR_2]) & "-" & Trim([ACTNUMBR_3]) AS

glAccountNumber, "account" AS accountType, Trim([ACTDESCR]) AS glAccountName, USERDEF1 AS

fsCaption FROM dbo_GL00100;

glDetail:

SELECT Trim([dbo_GL00100.ACTNUMBR_1]) & "-" & Trim([dbo_GL00100.ACTNUMBR_2]) & "-" &

Trim([dbo_GL00100.ACTNUMBR_3]) AS glAccountNumber, Trim([ACTDESCR]) AS userDefined1,

dbo_GL00100.USERDEF1 AS userDefined2, dbo_GL20000.SOURCDOC AS journalEntryType,

dbo_GL20000.JRNENTRY AS journalId, dbo_GL20000.TRXDATE AS period,

[dbo_GL20000.DEBITAMT]+([dbo_GL20000.CRDTAMNT]*-1) AS amount, IIf([amount]>=0,"D","C") AS

amountCreditDebitIndicator, dbo_GL20000.REFRENCE AS jeLineDescription, dbo_GL20000.CURNCYID AS

reportingAmountCurrency, dbo_GL20000.DEX_ROW_ID AS transactionId, Trim([USWHPSTD]) AS

enteredBy, dbo_GL20000.LSTDTEDT AS enteredDateTime, dbo_GL20000.Tag AS tags FROM

dbo_GL00100 INNER JOIN dbo_GL20000 ON dbo_GL00100.ACTINDX = dbo_GL20000.ACTINDX WHERE

(((dbo_GL20000.JRNENTRY)<>28)) ORDER BY dbo_GL20000.DEX_ROW_ID;

(NOTE that this query removes a few journal entries that relate to non-financial transactions posted to

the GL.)

And so, the queries take the information from the Microsoft Access database

TWO_AccountingSystem.accdb that mimics the Microsoft SQL Server data for you for this prototype and

converts the proprietary Microsoft Dynamics database table and field names to the Engine B Common

Data Model (CDM) table and field names in the Microsoft Access database TWO_Local_Iteration4.accdb

to make this information available for this prototype.

Fundamentally, what is going on is that accounting system data is being out into a standard model so

that standard software can be used to work on the data (as contrast to having to create a separate

application for each different accounting system that exists).

21 chartOfAccounts XBRL instance, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-
instance-chartOfAccounts.xml
22 glDetail XBRL instance, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-instance-
glDetail.xml

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-instance-chartOfAccounts.xml
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-instance-chartOfAccounts.xml
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-instance-glDetail.xml
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/iteration2-instance-glDetail.xml

15

STEP 8: Accounting System Data in CDM Database
This step mimics taking what would exist in the Microsoft Dynamics environment by putting the

accounting system MSSQL database tables into Microsoft Access and then creating queries that enable

you to look at The World Online data tables and fields using the standard CDM database tables and

fields within a Microsoft Access database23 (TWO_Local_Iteration4.accdb). All further processing will

occur within this Microsoft Access database. The accounting system database tables are converted to

the Engine B Common Data Model (CDM) in this same database.

23 Microsoft Access database with CDM data from accounting system,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration4.zip

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration4.zip

16

This Microsoft Access database should run on any computer that has Microsoft Access installed. I have

not tried to run this using the Microsoft Access runtime.

STEP 9: Report Writer
All prior processes enable all of the "leaf items" what would exist in a financial report to be generated in

the XBRL format. This includes the chart of accounts which has been mapped to XBRL concepts and

grouped by those concepts which provide real account balance information and the work tags which are

XBRL concepts which categorize the changes to each account.

Saying this another way, the chart of accounts represents the detailed line items of a financial report.

However, we also need the high-level branch items of the financial report (i.e. totals and subtotals) in

the XBRL-based report. For that, we need to go back to the XBRL taxonomy24. The XBRL taxonomy has

both the leaf nodes and the branch node information and the relationship between leaves and

branches:

24 Basic view of XBRL taxonomy,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/mini_ModelStructure.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/mini_ModelStructure.html

17

Note that the leaves/branches are easy for humans to read in the XBRL presentation relations; however,

they are best read by the XBRL calculation relations and XBRL definition relations for actual processing

by machine-based processes.

This task is hard coded by me for this prototype given my limitations in programming skills. A skilled

programmer can easily achieve what is necessary.

The module “BuildXBRLInstanceFacts” in the Microsoft Access database “xbrl-gl-

ImportAndFactsGeneration.accdb” has the SQL queries that are used to generate information for facts

that represent the totals and subtotals in the XBRL instance being generated. Here is one example SQL

query which is used to compute the subtotal (branch) mini:CurrentAssets from its leaves

mini:CashAndCashEquivalents, mini:Receivables, and mini:Inventories:

"INSERT INTO Facts (ReportingEntityAspect, CalendarPeriodAspect, ConceptAspect, FactValue,

Units, Rounding, ContextRef, UnitsRef) SELECT ReportingEntityAspect, TransactionPeriod,

'mini:CurrentAssets' AS GeneralLedgerAccountCode, Sum(Amount) AS SumOfAmount, Units,

Rounding, ContextRef, UnitsRef FROM qrySubtotalsOpeningBalances WHERE

(GeneralLedgerAccountCode = 'mini:CashAndCashEquivalents' OR GeneralLedgerAccountCode =

'mini:Receivables' OR GeneralLedgerAccountCode = 'mini:Inventories') GROUP BY

ReportingEntityAspect, TransactionPeriod, 'mini:CurrentAssets', Units, Rounding, ContextRef,

UnitsRef;”

Note that this process must be done correctly using pre-close information or post-close information

depending upon which line items you are working with.

STEP 10: Import Leaves and Branches to XBRL Instance Creator
Note that I have a PROTOTYPE that imports information from XBRL GL (i.e. rather than the CDM XBRL

format), generates the leaves and branches and other information that ends up as XBRL facts, and

18

outputs an XBRL instance. See xbrl-gl-JournalEntries-Instance.zip25. Due to my limited programming

skills, I cannot make this work dynamically (i.e. you change the XBRL taxonomy, the fact generation

changes to reflect the XBRL taxonomy changes.

Next, information from the CDM (i.e. summarized trial balance information, the leaf information) and

the computation of totals and subtotals (i.e. the branch information) is imported into a tool used to

generate XBRL-based financial reports26:

Beginning balances, ending balances, and changes are all imported from the CDM database tables using

some software application. The result is a set of facts that use the base XBRL taxonomy created in STEP

2. The XBRL concepts and XBRL work tags were used to summarize the details and generate the account

information and the XBRL taxonomy information and leaf facts are used to generate the subtotals and

totals. This results in a set of facts which makes up the XBRL instance:

25 Import and fact creation from previous example that works,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/xbrl-gl-JournalEntries-Instance.zip
26 Microsoft Access database (TWO_Local_Iteration2.accdb),
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration2.zip

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/xbrl-gl-JournalEntries-Instance.zip
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/TWO_Local_Iteration2.zip

19

This report production process is currently achieved using the provided Microsoft Access database

application27 (XBRLCreator-V05-iteration2.accdb) which should work on computers that run Microsoft

Windows 10 and have Microsoft Access installed.

However, there are two XBRL processors (XBRL Cloud’s XRun and UBmatrix’s XPE 4.0) that cannot be

provided as part of this prototype because those applications are licensed commercial software. XRun

and XPE are used to verify the XBRL-based report to be certain it is a properly functioning logical system

and properly formatted XBRL technical syntax using my method28.

Commercial licenses for this software could be purchased or other software which provides similar

functionality could be used. Alternatively, open source software such as Arelle29 could be used;

however, Arelle tends to be harder to use and does provide all of the necessary functionality.

Pesseract30 can be used to verify certain aspects of the XBRL-based financial report such as the

fundamental accounting concepts, model structure, disclosure mechanics rules, and reporting checklist

rules. However, Pesseract is only a working proof of concept and is not a fully compliant XBRL processor

or XBRL formula processor at this time.

Pacioli31, which is a logic engine that is currently not yet complete, can also provide certain functionality

to help verify that the XBRL instance and XBRL taxonomy generated are properly functioning.

The current raw XBRL instance generated as part of iteration #4 loads into Pesseract successfully

without error and verifies some aspects of the XBRL syntax, model structure, type-subtype associations,

fundamental accounting concept relations consistency cross checks, disclosure mechanics, and reporting

checklist. See the screen shot below:

27 Report generation Microsoft Access database,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/XBRLCreator-V05-iteration2.zip
28 Understanding Method (Abridged),
http://xbrlsite.azurewebsites.net/2020/Library/UnderstandingMethod_Abridged.pdf
29 Arelle.org, https://arelle.org/arelle/
30 Pesseract, http://pesseract.azurewebsites.net
31 Pacioli, http://xbrl.squarespace.com/journal/2020/9/15/pacioli.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/XBRLCreator-V05-iteration2.zip
http://xbrlsite.azurewebsites.net/2020/Library/UnderstandingMethod_Abridged.pdf
https://arelle.org/arelle/
http://pesseract.azurewebsites.net/
http://xbrl.squarespace.com/journal/2020/9/15/pacioli.html

20

Any XBRL processor, XBRL formula processor, and supplemental processing should provide the same

result which proves that the XBRL instance and XBRL taxonomy generated from this prototype are

properly functioning logical systems that are consistent, complete, and precise per the best practices

method used to verify this prototype.

STEP 11: Report Generation of XBRL-based Financial Reports
The output of the report generation process (XBRLCreator-V05-iteration4.accdb32) is a variety of XBRL-

based financial reports which will be explained below. Each of the reports uses exactly the same XBRL

taxonomy, XBRL formula based rules, and all other supporting base XBRL taxonomy to verify that the

report is created correctly. Each of the XBRL instances is important to understand.

Raw XBRL instance:

32 XBRLCreator-V05-iteration4.accdb,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/XBRLCreator-V05-iteration4.zip

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/XBRLCreator-V05-iteration4.zip

21

First, a raw XBRL instance33 is generated. Raw XBRL is machine readable however it can be effectively

converted to many other formats using software based processes. For example, the raw XBRL instance

(and any of the other Inline XBRL formats for that matter) can be converted into a human-readable

HTML based representation such as this auto generated from only the XBRL instance and supporting

XBRL taxonomy by XBRL Cloud34: (called the XBRL Cloud Evidence Package)

The version above provides both a “component perspective” which allows the individual fragments of

the report to be worked with and a “overview perspective” which allows multiple fragments to be

worked with from different perspectives at the same time. For example, one view provided is an HTML

version of the entire report which is human readable and provides visibility to the individual pieces that

make up the report (rendering summary35).

Unformatted, auto generated Inline XBRL instance:

33 Raw XBRL instance, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance.xml
34 XBRL Cloud Evidence Package, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/
35 Rendering Summary, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-
package/contents/RenderingSummary.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance.xml
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/RenderingSummary.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/evidence-package/contents/RenderingSummary.html

22

The following format is an Inline XBRL financial report that simply serializes the facts into a list36:

This report is not particularly useful to humans, but it is Inline XBRL and usable by machines.

Formatted, auto generated Inline XBRL instance:

Another interesting format is Inline XBRL that mimics the XBRL Cloud auto generated formatted raw

XBRL instance37:

The point of this is to show that Inline XBRL can actually be auto generated and does not necessarily

need to be hand formatted. You do loose certain formatting control if such an approach is used, but it

36 Unformatted, auto generated Inline XBRL,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-generated.html
37 Formatted, auto generated Inline XBRL,
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-generated.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance.html

23

saves time and money if you are not concerned about “pixel perfect” presentation of financial

information.

“Pixel Perfect” formatted, auto generated Inline XBRL instance:

What amounts to 100% control over rendering can be achieved if the reported facts are mapped into an

Inline XBRL page in a precise location by human effort. Without human effort, it is unlikely that auto

generated financial reports can be created that will satisfy every individual accountant who likely

preferers different formatting preferences. For example, here is an example of a pixel perfect Inline

XBRL-based financial report38:

The pixel perfect rendering is created by manually creating the HTML, mapping a fact ID to a slot in the

HTML representation, and then generating the Inline XBRL that is XHTML-based:

38 Pixel Perfect Inline XBRL, http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-
RENDERED.html

http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-RENDERED.html
http://xbrlsite.azurewebsites.net/2021/prototypes/recordToReport/instance-RENDERED.html

24

This functionality is provided in the Microsoft Access database XBRL instance creation tool (XBRLCreator-

V05-iteration2.accdb).

Note an updated and improved version of the above Microsoft Access database has been provided that

is also open source and free to download, use, and reverse engineer39.

STEP 12: XBRL-based Financial Report Verification
The final task is to verify that the XBRL-based financial report is both (a) a properly functioning logical

system and (b) is conveying the information intended by the creator of the XBRL-based financial report.

This is achieved by a combination of manual and automated processes to prove that the information

conveyed is consistent, complete, and precise. This process is documented in the Method of

Implementing a Standard Digital Financial Report Using the XBRL Syntax40.

The seven minimum steps must be performed in order to be complete and are summarized by this easy-

to-understand dashboard that is provided by Pesseract:

All of these verification tasks is necessary to verify that a financial report is a properly functioning logical

system that is consistent, complete, and precise. If these tasks are not performed using automated

processes; then the tasks must be performed manually. None of these tasks can simply be ignored

because each performs a role in the verification of the overall report quality. These necessary

capabilities are summarized below.

XBRL technical syntax verification:

XBRL International provides a conformance suite that helps software engineers create software that

serializes the XBRL technical syntax in a manner that is consistent with the XBRL technical specification.

39 Free Open Source Tool for Creating Quality XBRL-based Digital Financial Reports,
http://xbrl.squarespace.com/journal/2020/12/8/free-open-source-tool-for-creating-quality-xbrl-based-digita.html
40 Method of Implementing a Standard Digital Financial Report Using the XBRL Syntax,
http://www.xbrlsite.com/2020/Theory/SBRM-Method.pdf

http://xbrl.squarespace.com/journal/2020/12/8/free-open-source-tool-for-creating-quality-xbrl-based-digita.html
http://www.xbrlsite.com/2020/Theory/SBRM-Method.pdf

25

That conformance suite has approximately 500 tests of the XBRL 2.1 specification, 1,000 tests of the

XBRL Dimensions specification, and a similar number (but I don’t know the number) for XBRL formula.

These tests are 100% automated and accounting professionals don’t really need to concern themselves

with this level of testing is it “just happens correctly” in software. These tests are of the technical syntax

of the XBRL format for the most part but do include mathematical checks of the report itself. The

verification result might look something like this:

Roll up mathematics of report:

Roll forward mathematics of report:

26

Model structure verification:

The mechanical relations between the pieces of XBRL that are used in the representation of information

must be logical. The following matrix shows the associations between the representation artifact

categories within the report and are tested against the logic of such relations. GREEN means everything

is OK, ORANGE or RED means errors, YELLOW means what is being done is permissible but not

recommended:

The report created for Iteration #4 is consistent with expectation.

Type-subtype associations verification:

Report items are association with other report items in specific and permissible ways. For example,

“Property, plant, and equipment” is known to be a noncurrent asset, is represented in the base XBRL

taxonomy this iteration is using as a noncurrent asset, and is expected to be used as a noncurrent asset.

If the line item “Property, plant and equipment” is used as, say, a Current asset; that use would be

inconsistent with expectation. Because accountants are permitted to move the model around (i.e. a

financial report is not a static form) those same accountants have a responsibility to follow the rules as

to what is and what is not permissible when they make such changes within an XBRL taxonomy. Type-

subtype association verification is used to control these sorts of movements.

Other terms used to describe type-subtype associations include “wider-narrower” relations and

“general-special” relations and “class-subclass” relations. Here is an example of what a type-subtype

verification result might look like that checks all the fragments of the MINI financial reporting scheme:

27

Fundamental accounting concept relations continuity cross checks verification:

The fundamental accounting concept relations continuity cross checks verifies that the high-level

accounting relationships are being followed and that information represented within a report is

consistent with those well understood high level associations between financial concepts. Below you

see a verification result which points out that all such associations are consistent with expectation:

These fundamental accounting concept relations continuity cross checks can become a bit trickier in two

specific situations. First, when economic entities have different sets of such high level relations

adjustments as to which high level relations are necessary. The notion of different “reporting styles”

resolves this issue, using different sets of rules for different categories of economic entities. Second, if

an economic entity does not report a specific high-level line item it becomes necessary to derive such

line items. For example, it is common for the line item “Noncurrent assets” to not be included within

balance sheets. However, few balance sheets do not report “Current assets” or “Assets” (the total of

28

current and noncurrent assets). Accountants understand that “Assets = Current assets + Noncurrent

assets”. So, if “Noncurrent assets” is not explicitly reported then the value of that line item can be

derived using concepts that were reported, the rule, and deductive logic.

Disclosure mechanics relations verification:

An entire financial report can be broken down into fragments. One level of fragment is the disclosure;

the “stuff” that gets disclosed within a financial report. Disclosures have common characteristics that

do not change. For example, a balance sheet is comprised of two roll ups: “Assets” and “Liabilities and

Equity”. Balance sheets are not roll forwards. Roll ups always have exactly one total. Additionally, the

“Assets” roll up always has a specific concept such as “mini:Assets” that is used to represent the total of

that roll up in Iteration #4(a). Similarly, this is true for other roll ups. Effectively, there are patterns

within the disclosures provided within XBRL-based financial reports. Disclosure mechanics relations

rules articulate these relations and disclosure mechanics verification make sure reports created are

consistent with such rules. Here is an example of what a disclosure mechanics verification report might

look like:

Reporting rules (a.k.a. disclosure checklist) verification:

Financial reporting rules specify that certain disclosures are always required: balance sheet, income

statement, statement of cash flow, and changes in equity are always required. A basis of reporting is

always requiring (i.e. a report would make no sense without this disclosure), significant accounting

policies is always required, nature of business is generally always required, as is revenue recognition

policy whether or not an economic entity does not have revenue (i.e. how do you know you don’t have

revenue if you don’t have a revenue recognition policy?).

Other times disclosures are required if specific line items are reported. For example, if the line item

“Inventories” is reported on the balance sheet then the subcomponents of inventory need to be

reported.

Other such reporting rules make up the reporting rules verification. Here is an example of what a

reporting rules verification report might look like:

29

Manual “To do” verification:

There are two reasons manual verification must be performed. The first reason is because a verification

task cannot be automated. The second reason is that a task could be automated if the proper rules

were written; however, those machine-readable rules do not yet exist.

If a process is created and has been checked to make sure the process is working properly and nothing

changes, manual checks can be reduced. But if a change is introduced into the system, the risk of error

increases. Not looking for mistakes is not an effective strategy for creating high-quality XBRL-based

financial reports. It is the responsibility of professional accountants to create true and fair

representations of their financial reports whether the consumer of such reports is a human or a machine

such as a software application.

STEP 13: Common Audit Data Schedules
Similar to how the CDM provides a standard model for an accounting system, the Engine B Audit

Common Data Model41 provide common audit schedules. Common audit data schedules are not

currently part of Iteration #4. The audit schedules simply provide additional details that supplement the

core financial report.

41 Engine B, A guide to the Audit Common Data Model, https://engineb.hubspotpagebuilder.com/audit-common-
data-model-guide

https://engineb.hubspotpagebuilder.com/audit-common-data-model-guide
https://engineb.hubspotpagebuilder.com/audit-common-data-model-guide

